Bee Systematics and Conservation
DOI:
https://doi.org/10.13102/sociobiology.v72i2.11416Keywords:
Apoidea, biodiversity, phylogeny, pollinators, spatial diversity, taxonomyAbstract
Diversity can be examined and interpreted from various perspectives, including species richness, genetic and phenotypic differences, variation in behaviors and natural history, and phylogenetic history. Centuries of taxonomic research have revealed approximately 21,000 bee species worldwide. These can be subdivided into a hierarchy of subgroups that reflects their evolutionary history, thanks to the increasingly more comprehensive phylogenetic hypotheses available. Advances in bee systematics have enhanced our understanding of how their diversity has evolved, including their origin in the Cretaceous, shifts in their geographical distribution, the evolution of social and parasitic behaviors, and changes in relationships between bees and the plants they visit throughout a 120-million-year shared evolutionary history. An important outcome of the enduring relationship with flowering plants is the vital role bees play in pollination in both natural and agricultural ecosystems. Habitat loss, climate change, and other anthropogenic environmental alterations have led to declines in bee populations, which have sparked concerns about bee conservation and highlighted the importance of understanding the complementary aspects of diversity, including the evolutionary and geographical components of this variation. The availability of increasingly reliable and comprehensive phylogenetic hypotheses has led to significant advancements, enabling assessments of the phylogenetic diversity of bee communities and predictions regarding their vulnerability to habitat change and their ecological functions. This review explores perspectives of documenting and interpreting bee diversity in a changing world and summarizes the current bee classification while discussing the phylogenetic advances in contemporary research.
Downloads
References
Alexander, B.A. & Michener, C.D. (1995). Phylogenetic studies of the families of short-tongued bees (Hymenoptera: Apoidea). University of Kansas Science Bulletin, 55: 377-424.
Almeida, E.A.B. (2008). Revised species checklist of the Paracolletinae (Hymenoptera, Colletidae) of the Australian Region, with the description of new taxa. Zootaxa, 1891: 1-24.
Almeida, E.A.B., Bossert, S., Danforth, B.N., Porto, D.S., Freitas, F.V., Davis, C.C., Murray, E.A., Blaimer, B.B., Spasojevic, T., Ströher, P.R., Orr, M.C., Packer, L., Brady, S.G., Kuhlmann, M., Branstetter, M.G. & Pie, M.R. (2023). The evolutionary history of bees in time and space. Current Biology, 33: 3409-3422.e6.
Almeida, E.A.B. & Danforth, B.N. (2009). Phylogeny of colletid bees (Hymenoptera: Colletidae) inferred from four nuclear genes. Molecular Phylogenetics and Evolution, 50: 290-309.
Almeida, E.A.B., Packer, L. & Danforth, B.N. (2008). Phylogeny of the Xeromelissinae (Hymenoptera: Colletidae) based upon morphology and molecules. Apidologie, 39: 75-85.
Almeida, E.A.B., Packer, L., Melo, G.A.R., Danforth, B.N., Cardinal, S.C., Quinteiro, F.B. & Pie, M.R. (2019). The diversification of neopasiphaeine bees during the Cenozoic (Hymenoptera: Colletidae). Zoologica Scripta, 48: 226-242.
Almeida, E.A.B., Pie, M.R., Brady, S.G. & Danforth, B.N. (2012). Biogeography and diversification of colletid bees (Hymenoptera: Colletidae): emerging patterns from the southern end of the world. Journal of Biogeography, 39: 526-544.
Ascher, J.S. (2003). Appendix: Evidence for the phylogenetic position of Nolanomelissa from nuclear EF-1a sequence data. In: Melo, G.A.R. & Alves-dos-Santos, I. (Eds), Apoidea Neotropica: Homenagem aos 90 anos de Jesus Santiago Moure. Editora da UNESC, Crisciúma, pp. 17-19.
Ascher, J.S. & Engel, M.S. (2006). On the availability of family-group names based on Scrapter (Hymenoptera: Colletidae). Entomological News, 117: 117-119.
Ascher, J.S. & Pickering, J. (2020). Discover Life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila); Draft-55, 17 November, 2020. Available from: http://www.discoverlife.org/mp/20q?guide=Apoidea_species. (Acessed: 28 July 2024)
Best, L., Engler, J., Feuerborn, C., Larsen, J., Lindh, B., Marshall, C.J., Melathopoulos, A., Kincaid, S. & Robinson, S.V.J. (2022). Oregon Bee Atlas: Wild bee findings from 2019. Catalog: Oregon State Arthropod Collection, 6: 1.
Boone, M. L., Evans, E., Arnold, T. & Cariveau, D. P. (2023). Increasing sampling efficiency of Bombus communities with rare and endangered species by optimizing detection probabilities: A multi-species occupancy modelling approach using roadsides as a case study. Biological Conservation, 283: 110122.
Bossert, S., Copeland, R.S., Sless, T.J.L., Branstetter, M.G., Gillung, J.P., Brady, S.G., Danforth, B.N., Policarová, J. & Straka, J. (2020). Phylogenomic and morphological reevaluation of the bee tribes Biastini, Neolarrini, and Townsendiellini (Hymenoptera: Apidae) with description of three new species of Schwarzia. Insect Systematics and Diversity, 4: 1-29.
Bossert, S., Murray, E.A., Almeida, E.A.B., Brady, S.G., Blaimer, B.B. & Danforth, B.N. (2019). Combining transcriptomes and ultraconserved elements to illuminate the phylogeny of Apidae. Molecular Phylogenetics and Evolution, 130: 121-131.
Bossert, S., Murray, E.A., Blaimer, B.B. & Danforth, B.N. (2017) The impact of GC bias on phylogenetic accuracy using targeted enrichment phylogenomic data. Molecular Phylogenetics and Evolution, 111: 149-157.
Bossert, S., Pauly, A., Danforth, B.N., Orr, M.C. & Murray, E.A. (2024) Lessons from assembling UCEs: A comparison of common methods and the case of Clavinomia (Halictidae). Molecular Ecology Resources, 24: e13925.
Bossert, S., Wood, T.J., Patiny, S., Michez, D., Almeida, E.A.B., Minckley, R.L., Packer, L., Neff, J.L., Copeland, R.S., Straka, J., Pauly, A., Griswold, T., Brady, S.G., Danforth, B.N. & Murray, E.A. (2022). Phylogeny, biogeography and diversification of the mining bee family Andrenidae. Systematic Entomology, 47: 283-302.
Branstetter, M.G., Danforth, B.N., Pitts, J.P., Faircloth, B.C., Ward, P.S., Buffington, M.L., Gates, M.W., Kula, R.R. & Brady, S.G. (2017). Phylogenomic insights into the evolution of stinging wasps and the origins of ants and bees. Current Biology, 27: 1019-1025.
Branstetter, M.G., Müller, A., Griswold, T.L., Orr, M.C. & Zhu, C.-D. (2021). Ultraconserved element phylogenomics and biogeography of the agriculturally important mason bee subgenus Osmia (Osmia). Systematic Entomology, 46: 453-472.
Camargo, J.M.F. & Roubik, D.W. (1991). Systematics and bionomics of the apoid obligate necrophages: The Trigona hypogea group (Hymenoptera: Apidae; Meliponinae). Biological Journal of the Linnean Society, 44: 13-39.
Cameron, S.A. (1993). Multiple origins of advanced eusociality in bees inferred from mitochondrial DNA sequences. Proceedings of the National Academy of Sciences, 90: 8687-8691.
Cardinal, S. & Danforth, B.N. (2013). Bees diversified in the age of eudicots. Proceedings of the Royal Society B: Biological Sciences, 280: 20122686.
Cardinal, S., Straka, J. & Danforth, B.N. (2010). Comprehensive phylogeny of apid bees reveals the evolutionary origins and antiquity of cleptoparasitism. Proceedings of the National Academy of Sciences, 107: 16207-16211.
Corrêa-Neto, J.J., Hipólito, J. & Oliveira, M.L. de. (2024). Bee diversity patterns in coastal Amazonia: Effects of local habitat and landscape heterogeneity. Journal of Insect Conservation, 28: 855-867.
Danforth, B. (2007). Bees. Current Biology, 17: R156-R161.
Danforth, B.N. (2002). Evolution of sociality in a primitively eusocial lineage of bees. Proceedings of the National Academy of Sciences, 99: 286-290.
Danforth, B.N., Brady, S.G., Sipes, S.D. & Pearson, A. (2004) Single-copy nuclear genes recover Cretaceous-age divergences in bees. Systematic Biology, 53: 278-298.
Danforth, B.N., Cardinal, S., Praz, C., Almeida, E.A.B. & Michez, D. (2013). The impact of molecular data on our understanding of bee phylogeny and evolution. Annual Review of Entomology, 58: 57-78.
Danforth, B.N., Conway, L. & Ji, S. (2003). Phylogeny of eusocial Lasioglossum reveals multiple losses of eusociality within a primitively eusocial clade of bees (Hymenoptera: Halictidae). Systematic Biology, 52: 23-36.
Danforth, B.N., Eardley, C., Packer, L., Walker, K., Pauly, A. & Randrianambinintsoa, F.J. (2008) Phylogeny of Halictidae with an emphasis on endemic African Halictinae. Apidologie, 39: 86-101.
Danforth, B.N., Fang, J. & Sipes, S. (2006a). Analysis of family-level relationships in bees (Hymenoptera: Apiformes) using 28S and two previously unexplored nuclear genes: CAD and RNA polymerase II. Molecular Phylogenetics and Evolution, 39: 358-372.
Danforth, B.N., Minckley, R.L. & Neff, J.L. (2019). The Solitary Bees. Biology, Evolution, Conservation. 1st ed. Princeton University Press, Princeton, 472+xi p.
Danforth, B.N., Sipes, S., Fang, J. & Brady, S.G. (2006b). The history of early bee diversification based on five genes plus morphology. Proceedings of the National Academy of Sciences, 103: 15118-15123.
Davies, T. J. & Buckley, L. B. (2011). Phylogenetic diversity as a window into the evolutionary and biogeographic histories of present-day richness gradients for mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 366: 2414-2425.
de Pedro, D., Ceccarelli, F.S., Vandame, R., Mérida, J. & Sagot, P. (2023). Congruence between species richness and phylogenetic diversity in North America for the bee genus Diadasia (Hymenoptera: Apidae). Biodiversity and Conservation.
Dicks, L.V., Breeze, T.D., Ngo, H.T., Senapathi, D., An, J., Aizen, M.A., Basu, P., Buchori, D., Galetto, L., Garibaldi, L.A., Gemmill-Herren, B., Howlett, B.G., Imperatriz-Fonseca, V.L., Johnson, S.D., Kovács-Hostyánszki, A., Kwon, Y.J., Lattorff, H.M.G., Lungharwo, T., Seymour, C.L., Vanbergen, A.J. & Potts, S.G. (2021). A global-scale expert assessment of drivers and risks associated with pollinator decline. Nature Ecology & Evolution, 1-9.
Dobelmann, J., Manley, R. & Wilfert, L. (2024). Caught in the act: The invasion of a viral vector changes viral prevalence and titre in native honeybees and bumblebees. Biology Letters, 20: 20230600.
Engel, M.S. (2000). A new interpretation of the oldest fossil bee (Hymenoptera, Apidae). American Museum Novitates 3296: 1-11.
Engel, M.S. (2001). A monograph of the Baltic amber bees and evolution of the Apoidea (Hymenoptera). Bulletin of the American Museum of Natural History, 259: 1-192.
Engel, M.S. (2005). Family-group names for bees (Hymenoptera: Apoidea). American Museum Novitates, 3476: 1-33.
Engel, M.S., Rasmussen, C. & Gonzalez, V.H. (2020). Bees: Phylogeny and classification. In: C. Starr (Ed), Encyclopedia of Social Insects. Springer International Publishing, Cham, pp. 1-17.
Engel, M.S. & Xie, J. (2024). The bee fauna of Eocene Fushun amber (Hymenoptera: Apoidea). Bulletin of the American Museum of Natural History, 469: 1-80.
Flaminio, S., Ranalli, R., Zavatta, L., Galloni, M. & Bortolotti, L. (2021). Beewatching: A project for monitoring bees through photos. Insects, 12: 841.
Freitas, F.V., Branstetter, M.G., Franceschini-Santos, V.H., Dorchin, A., Wright, K.W., López-Uribe, M.M., Griswold, T., Silveira, F.A. & Almeida, E.A.B. (2023). UCE phylogenomics, biogeography, and classification of long-horned bees (
Freitas, F.V., Branstetter, M.G., Griswold, T. & Almeida, E.A.B. (2021). Partitioned gene-tree analyses and gene-based topology testing help resolve incongruence in a phylogenomic study of host-specialist bees (Apidae: Eucerinae). Molecular Biology and Evolution, 38: 1090-1100.
Gibbs, J. (2018). DNA barcoding a nightmare taxon: Assessing barcode index numbers and barcode gaps for sweat bees. Genome, 61: 21-31.
Gonçalves, R.B. (2016). A molecular and morphological phylogeny of the extant Augochlorini (Hymenoptera, Apoidea) with comments on implications for biogeography. Systematic Entomology, 41: 430-440.
Gonçalves, R.B., Meira, O.M. & Rosa, B.B. (2022). Total-evidence dating and morphological partitioning: a novel approach to understand the phylogeny and biogeography of augochlorine bees (Hymenoptera: Apoidea). Zoological Journal of the Linnean Society, 195: 1390-1406.
Gonzalez, V.H., Griswold, T. & Engel, M.S. (2013). Obtaining a better taxonomic understanding of native bees: Where do we start? Systematic Entomology, 38: 645-653.
Gonzalez, V.H., Griswold, T., Praz, C.J. & Danforth, B.N. (2012). Phylogeny of the bee family Megachilidae (Hymenoptera: Apoidea) based on adult morphology. Systematic Entomology, 37: 261-286.
Goulson, D., Nicholls, E., Botías, C. & Rotheray, E.L. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347: 1255957.
Grab, H., Branstetter, M.G., Amon, N., Urban-Mead, K.R., Park, M.G., Gibbs, J., Blitzer, E.J., Poveda, K., Loeb, G. & Danforth, B.N. (2019). Agriculturally dominated landscapes reduce bee phylogenetic diversity and pollination services. Science, 363: 282-284.
Gratton, E.M., McNeil, D.J., Jr, Grozinger, C.M. & Hines, H.M. (2023). Local habitat type influences bumble bee pathogen loads and bee species distributions. Environmental Entomology, 52: 491-501.
Haas, J., Hayward, A., Buer, B., Maiwald, F., Nebelsiek, B., Glaubitz, J., Bass, C. & Nauen, R. (2022). Phylogenomic and functional characterization of an evolutionary conserved cytochrome P450-based insecticide detoxification mechanism in bees. Proceedings of the National Academy of Sciences, 119: e2205850119.
Harrison, T., Gibbs, J. & Winfree, R. (2018). Forest bees are replaced in agricultural and urban landscapes by native species with different phenologies and life-history traits. Global Change Biology, 24: 287-296.
Hennig, W. (1966). Phylogenetic Systematics. University of Illinois Press, Urbana, 263 pp.
Henríquez-Piskulich, P., Hugall, A.F. & Stuart-Fox, D. (2024). A supermatrix phylogeny of the world's bees (Hymenoptera: Anthophila). Molecular Phylogenetics and Evolution, 190: 107963.
Holt, B.G., Lessard, J.-P., Borregaard, M.K., Fritz, S.A., Araújo, M.B., Dimitrov, D., Fabre, P.-H., Graham, C.H., Graves, G.R., Jønsson, K.A., Nogués-Bravo, D., Wang, Z., Whittaker, R.J., Fjeldså, J. & Rahbek, C. (2013). An update of Wallace's zoogeographic regions of the world. Science, 339: 74-78.
Hortal, J., de Bello, F., Diniz-Filho, J. A. F., Lewinsohn, T. M., Lobo, J. M. & Ladle, R. J. (2015). Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics, 46: 523-549.
Hrncir, M. (2022). Pollinator conservation: Where will bees go in the Anthropocene future? Current Biology, 32: R1351-R1353.
Husemann, M., Neiber, M.T., Nickel, J., Reinbold, C.V.M., Kuhlmann, M. & Cordellier, M. (2021). Mitogenomic phylogeny of bee families confirms the basal position and monophyly of Melittidae. Zoologica Scripta, 50: 352-357.
ICZN - International Commission on Zoological Nomenclature (1985). International Code of Zoological Nomenclature. 3rd ed. International Trust for Zoological Nomenclature, London, xx + 338 p.
ICZN - International Commission on Zoological Nomenclature (1999). International Code of Zoological Nomenclature. 4th ed. International Trust for Zoological Nomenclature, London, xxix + 306 p.
Kammerer, M., Goslee, S.C., Douglas, M.R., Tooker, J.F. & Grozinger, C.M. (2021). Wild bees as winners and losers: Relative impacts of landscape composition, quality, and climate. Global Change Biology, 27: 1250-1265.
Kawakita, A., Ascher, J.S., Sota, T., Kato, M. & Roubik, D.W. (2008). Phylogenetic analysis of the corbiculate bee tribes based on 12 nuclear protein-coding genes (Hymenoptera: Apoidea: Apidae). Apidologie, 39: 163-175.
Kevan, P. & Silva, P.N. (2020). Pollination and agriculture. In: C. K. Starr (Ed), Encyclopedia of Social Insects. Springer International Publishing, Cham, pp. 1-9.
Leclercq, N., Marshall, L., Weekers, T., Basu, P., Benda, D., Bevk, D., Bhattacharya, R., Bogusch, P., Bontšutšnaja, A., Bortolotti, L., Cabirol, N., Calderón-Uraga, E., Carvalho, R., Castro, S., Chatterjee, S., De La Cruz Alquicira, M., de Miranda, J.R., Dirilgen, T., Dorchin, A., Dorji, K., Drepper, B., Flaminio, S., Gailis, J., Galloni, M., Gaspar, H., Gikungu, M.W., Hatteland, B.A., Hinojosa-Diaz, I., Hostinská, L., Howlett, B.G., Hung, K.-L.J., Hutchinson, L., Jesus, R.O., Karklina, N., Khan, M.S., Loureiro, J., Men, X., Molenberg, J.-M., Mudri-Stojnić, S., Nikolic, P., Normandin, E., Osterman, J., Ouyang, F., Oygarden, A.S., Ozolina-Pole, L., Ozols, N., Parra Saldivar, A., Paxton, R.J., Pitts-Singer, T., Poveda, K., Prendergast, K., Quaranta, M., Read, S.F.J., Reinhardt, S., Rojas-Oropeza, M., Ruiz, C., Rundlöf, M., Sade, A., Sandberg, C., Sgolastra, F., Shah, S.F., Shebl, M.A., Soon, V., Stanley, D.A., Straka, J., Theodorou, P., Tobajas, E., Vaca-Uribe, J.L., Vera, A., Villagra, C.A., Williams, M.-K., Wolowski, M., Wood, T.J., Yan, Z., Zhang, Q. & Vereecken, N.J. (2023a). Global taxonomic, functional, and phylogenetic diversity of bees in apple orchards. Science of the Total Environment, 901: 165933.
Leclercq, N., Marshall, L., Caruso, G., Schiel, K., Weekers, T., Carvalheiro, L.G., Dathe, H.H., Kuhlmann, M., Michez, D., Potts, S.G., Rasmont, P., Roberts, S.P.M., Smagghe, G., Vandamme, P. & Vereecken, N.J. (2023b). European bee diversity: Taxonomic and phylogenetic patterns. Journal of Biogeography, 50: 1244-1256.
Lepeco, A., Branstetter, M.G., Melo, G.A.R., Freitas, F.V., Tobin, K.B., Gan, J., Jensen, J. & Almeida, E.A.B. (2024). Phylogenomic insights into the worldwide evolutionary relationships of the stingless bees (Apidae, Meliponini). Molecular Phylogenetics and Evolution, 201: 108219.
Lin, N. & Michener, C.D. (1972). Evolution of sociality in insects. The Quarterly Review of Biology, 47: 131-159.
Litman, J.R. (2019) Under the radar: detection avoidance in brood parasitic bees. Philosophical Transactions of the Royal Society B: Biological Sciences, 374: 20180196.
Litman, J.R., Danforth, B.N., Eardley, C.D. & Praz, C.J. (2011). Why do leafcutter bees cut leaves? New insights into the early evolution of bees. Proceedings of the Royal Society B: Biological Sciences, 278: 3593-3600.
Litman, J.R., Praz, C.J., Danforth, B.N., Griswold, T.L. & Cardinal, S. (2013). Origins, evolution, and diversification of cleptoparasitic lineages in long-tongued bees. Evolution, 67: 2982-2998.
Lowe, E. B., Groves, R. & Gratton, C. (2021). Impacts of field-edge flower plantings on pollinator conservation and ecosystem service delivery – A meta-analysis. Agriculture, Ecosystems & Environment, 310: 107290.
MacIvor, J.S. & Packer, L. (2016). The bees among us: Modelling occupancy of solitary bees. PLoS ONE, 11: e0164764.
Martins, A.C., Luz, D.R. & Melo, G.A.R. (2018). Palaeocene origin of the Neotropical lineage of cleptoparasitic bees Ericrocidini-Rhathymini (Hymenoptera, Apidae). Systematic Entomology, 43: 510-521.
Martins, A.C., Melo, G.A.R. & Renner, S.S. (2014). The corbiculate bees arose from New World oil-collecting bees: Implications for the origin of pollen baskets. Molecular Phylogenetics and Evolution, 80: 88-94.
Marshall, L., Ascher, J.S., Villagra, C., Beaugendre, A., Herrera, V., Henríquez-Piskulich, P., Vera, A. & Vereecken, N.J. (2023). Chilean bee diversity: Contrasting patterns of species and phylogenetic turnover along a large-scale ecological gradient. Ecosphere, 14: e4535.
Marshall, L., Leclercq, N., Carvalheiro, L.G., Dathe, H.H., Jacobi, B., Kuhlmann, M., Potts, S.G., Rasmont, P., Roberts, S.P.M. & Vereecken, N.J. (2024). Understanding and addressing shortfalls in European wild bee data. Biological Conservation, 290: 110455.
Mayer, C., Adler, L., Armbruster, W.S., Dafni, A., Eardley, C., Huang, S.-Q., Kevan, P.G., Ollerton, J., Packer, L., Ssymank, A., Stout, J.C. & Potts, S.G. (2011). Pollination ecology in the 21st Century: Key questions for future research. Journal of Pollination Ecology, 8-23.
McArt, S.H., Urbanowicz, C., McCoshum, S., Irwin, R.E. & Adler, L.S. (2017). Landscape predictors of pathogen prevalence and range contractions in US bumblebees. Proceedings of the Royal Society B: Biological Sciences, 284: 20172181.
Melo, G.A.R. & Gonçalves, R.B. (2005). Higher-level bee classifications (Hymenoptera, Apoidea, Apidae sensu lato). Revista Brasileira de Zoologia, 22: 153-159.
Michener, C.D. (1944). Comparative external morphology, phylogeny, and a classification of the bees (Hymenoptera). Bulletin of the American Museum of Natural History, 82: 151-326.
Michener, C.D. (1964). Evolution of the nests of bees. American Zoologist, 4: 227-239.
Michener, C.D. (1974). The Social Behavior of the Bees: A Comparative Study. Harvard University Press.
Michener, C.D. (1979). Biogeography of the bees. Annals of the Missouri Botanical Garden, 66: 277-347.
Michener, C.D. (1986). Family-group names among bees. Journal of the Kansas Entomological Society, 59: 219-234.
Michener, C.D. (2007). The Bees of the World. 2nd ed. John Hopkins University Press, Baltimore, xvi+953 p.
Michez, D., Patiny, S. & Danforth, B.N. (2009). Phylogeny of the bee family Melittidae (Hymenoptera: Anthophila) based on combined molecular and morphological data. Systematic Entomology, 34: 574-597.
Michez, D., Vanderplanck, M. & Engel, M.S. (2012). Fossil bees and their plant associates. In: S. Patiny (Ed), Evolution of Plant-Pollinator Relationships. Systematics Association Special Volume Series. Cambridge University Press, Cambridge, pp. 103-164.
Moure, J.S., Graf, V. & Urban, D. (1999). Catálogo de Apoidea da Região Neotropical (Hymenoptera, Colletidae). I. Paracolletini. Revista Brasileira de Zoologia, 16: 1-46.
Moure, J.S., Urban, D. & Melo, G.A.R. (2023). Catalogue of Bees (Hymenoptera, Apoidea) in the Neotropical Region - online version. Available from: http://www.moure.cria.org.br/catalogue
Murray, E.A., Bossert, S. & Danforth, B.N. (2018). Pollinivory and the diversification dynamics of bees. Biology Letters, 14: 20180530.
Müller, U., Bruninga-Socolar, B., Brokaw, J., Cariveau, D.P. & Williams, N.M. (2024). Integrating perspectives on ecology, conservation value, and policy of bee pollinator seed mixes. Frontiers in Ecology and the Environment, 22: e2715.
Odanaka, K.A. & Rehan, S.M. (2019). Impact indicators: Effects of land use management on functional trait and phylogenetic diversity of wild bees. Agriculture, Ecosystems & Environment, 286: 106663.
Ollerton, J. (2017). Pollinator diversity: Distribution, ecological function, and conservation. Annual Review of Ecology, Evolution, and Systematics, 48: 353-376.
Orr, M.C., Branstetter, M.G., Straka, J., Yuan, F., Leijs, R., Zhang, D., Zhou, Q. & Zhu, C.-D. (2022). Phylogenomic interrogation revives an overlooked hypothesis for the early evolution of the bee family Apidae (Hymenoptera: Apoidea), with a focus on the subfamily Anthophorinae. Insect Systematics and Diversity 6, ixac022.
Orr, M.C., Chesters, D., Williams, P.H., Wood, T.J., Zhou, Q., Bossert, S., Sless, T., Warrit, N., Rasmont, P., Ghisbain, G., Boustani, M., Luo, A., Feng, Y., Niu, Z.-Q. & Zhu, C.-D. (2024). Integrative taxonomy of a new species of a bumble bee-mimicking brood parasitic bee, Tetralonioidella mimetica (Hymenoptera, Apoidea, Apidae), investigated through phylogenomics. Journal of Hymenoptera Research, 97: 755-780.
Orr, M.C., Hughes, A.C., Chesters, D., Pickering, J., Zhu, C.-D. & Ascher, J.S. (2021). Global patterns and drivers of bee distribution. Current Biology, 31: 451-458.
Ostwald, M.M., da Silva, C.R.B. & Seltmann, K.C. (2024). How does climate change impact social bees and bee sociality? Journal of Animal Ecology, 93: 1610-1621.
Otto, C.R.V., Schrage, A.C., Bailey, L.L., Mola, J.M., Smith, T.A., Pearse, I., Simanonok, S. & Grundel, R. (2023). Addressing detection uncertainty in Bombus affinis (Hymenoptera: Apidae) surveys can improve inferences made from monitoring. Environmental Entomology, 52: 108-118.
Packer, L. (1991). The evolution of social behavior and nest architecture in sweat bees of the subgenus Evylaeus (Hymenoptera : Halictidae): a phylogenetic approach. Behavioral Ecology and Sociobiology, 29: 153-160.
Packer, L., Gibbs, J., Sheffield, C. & Hanner, R. (2009). DNA barcoding and the mediocrity of morphology. Molecular Ecology Resources, 9: 42-50.
Packer, L., Litman, J. & Praz, C.J. (2017). Phylogenetic position of a remarkable new fideliine bee from northern Chile (Hymenoptera: Megachilidae). Systematic Entomology, 42: 473-488.
Packer, L. & Ruz, L. (2017). DNA barcoding the bees (Hymenoptera: Apoidea) of Chile: Species discovery in a reasonably well known bee fauna with the description of a new species of Lonchopria (Colletidae). Genome, 60: 414-430.
Patiny, S., Michez, D. & Danforth, B.N. (2008). Phylogenetic relationships and host-plant evolution within the basal clade of Halictidae (Hymenoptera, Apoidea). Cladistics, 24: 255-269.
Payne, H.E., Mazer, S. & C. Seltmann, K. (2024). Native bee habitat restoration: Key ecological considerations from recent North American literature. Frontiers in Ecology and Evolution 12: 1358621.
Pereira, H.M., Leadley, P.W., Proença, V., Alkemade, R., Scharlemann, J.P.W., Fernandez-Manjarrés, J.F., Araújo, M.B., Balvanera, P., Biggs, R., Cheung, W.W.L., Chini, L., Cooper, H.D., Gilman, E.L., Guénette, S., Hurtt, G.C., Huntington, H.P., Mace, G.M., Oberdorff, T., Revenga, C., Rodrigues, P., Scholes, R.J., Sumaila, U.R. & Walpole, M. (2010). Scenarios for global biodiversity in the 21st century. Science, 330: 1496-1501.
Pesenko, Y.A. (1999). Phylogeny and classification of the family Halictidae revised (Hymenoptera: Apoidea). Journal of the Kansas Entomological Society, 72: 104-123.
Peters, R.S., Krogmann, L., Mayer, C., Donath, A., Gunkel, S., Meusemann, K., Kozlov, A., Podsiadlowski, L., Petersen, M., Lanfear, R., Diez, P.A., Heraty, J., Kjer, K.M., Klopfstein, S., Meier, R., Polidori, C., Schmitt, T., Liu, S., Zhou, X., Wappler, T., Rust, J., Misof, B. & Niehuis, O. (2017). Evolutionary history of the Hymenoptera. Current Biology, 27: 1013-1018.
Pisanty, G., Richter, R., Martin, T., Dettman, J. & Cardinal, S. (2022). Molecular phylogeny, historical biogeography and revised classification of andrenine bees (Hymenoptera: Andrenidae). Molecular Phylogenetics and Evolution, 170: 107151.
Plant, J.D. & Paulus, H.F. (2016). Evolution and phylogeny of bees. Review and cladistic analysis in light of morphological evidence (Hymenoptera, Apoidea). Zoologica, 161: 1-364.
Porto, D.S. & Almeida, E.A.B. (2021). Corbiculate bees (Hymenoptera: Apidae): Exploring the limits of morphological data to solve a hard phylogenetic problem. Insect Systematics and Diversity, 5: 1-40.
Ramos, K.S., Martins, A.C. & Melo, G.A.R. (2022). Evolution of andrenine bees reveals a long and complex history of faunal interchanges through the Americas during the Mesozoic and Cenozoic. Molecular Phylogenetics and Evolution, 172: 107484.
Roig-Alsina, A. & Michener, C.D. (1993). Studies of the phylogeny and classification of long-tongued bees (Hym.: Apoidea). University of Kansas Science Bulletin, 55: 124-162.
Romiguier, J., Cameron, S.A., Woodard, S.H., Fischman, B.J., Keller, L. & Praz, C.J. (2016). Phylogenomics controlling for base compositional bias reveals a single origin of eusociality in corbiculate bees. Molecular Biology and Evolution, 33: 670-678.
Roubik, D.W. (2020). Bees, ecological roles bees: Ecological roles. In: C.K. Starr (Ed), Encyclopedia of Social Insects. Springer International Publishing, Cham, pp. 1-6.
Sann, M., Niehuis, O., Peters, R.S., Mayer, C., Kozlov, A., Podsiadlowski, L., Bank, S., Meusemann, K., Misof, B., Bleidorn, C. & Ohl, M. (2018). Phylogenomic analysis of Apoidea sheds new light on the sister group of bees. BMC Evolutionary Biology, 18: 71.
Scheper, J., Reemer, M., van Kats, R., Ozinga, W. A., van der Linden, G. T. J., Schaminée, J. H. J., Siepel, H. & Kleijn, D. (2014). Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands. Proceedings of the National Academy of Sciences, 111: 17552-17557.
Schwarz, M.P., Richards, M.H. & Danforth, B.N. (2007). Changing paradigms in insect social evolution: Insights from halictine and allodapine bees. Annual Review of Entomology, 52: 127-150.
Sheffield, C.S. & Yanega, D. (2024). Teratognathini Silveira, the priority family-group name for Ancyloscelidini Engel and Michener (Hymenoptera: Apoidea: Apidae: Eucerinae). Zootaxa, 5404: 73-75.
Sless, T.J.L., Branstetter, M.G., Gillung, J.P., Krichilsky, E.A., Tobin, K.B., Straka, J., Rozen, J.G., Freitas, F.V., Martins, A.C., Bossert, S., Searle, J.B. & Danforth, B.N. (2022). Phylogenetic relationships and the evolution of host preferences in the largest clade of brood parasitic bees (Apidae: Nomadinae). Molecular Phylogenetics and Evolution, 107326.
Sless, T.J.L., Branstetter, M.G., Mikát, M., Odanaka, K.A., Tobin, K.B. & Rehan, S.M. (2024). Phylogenomics and biogeography of the small carpenter bees (Apidae: Xylocopinae: Ceratina). Molecular Phylogenetics and Evolution, 198: 108133.
Sless, T.J.L., Danforth, B.N. & Searle, J.B. (2023). Evolutionary origins and patterns of diversification in animal brood parasitism. The American Naturalist, 202: 107-121.
Soroye, P., Newbold, T. & Kerr, J. (2020). Climate change contributes to widespread declines among bumble bees across continents. Science, 367: 685-688.
Steffan, S.A., Dharampal, P.S., Kueneman, J.G., Keller, A., Argueta-Guzmán, M.P., McFrederick, Q.S., Buchmann, S.L., Vannette, R.L., Edlund, A.F., Mezera, C.C., Amon, N. & Danforth, B.N. (2024). Microbes, the "silent third partners" of bee-angiosperm mutualisms. Trends in Ecology & Evolution 39: 65-77.
Straka, J., Benda, D., Policarová, J., Astapenková, A., Wood, T.J. & Bossert, S. (2024). A phylogenomic monograph of West-Palearctic Nomada (Hymenoptera: Apidae). Insect Systematics and Diversity, 8:1.
Turley, N.E., Biddinger, D.J., Joshi, N.K. & López-Uribe, M.M. (2022). Six years of wild bee monitoring shows changes in biodiversity within and across years and declines in abundance. Ecology and Evolution, 12: e9190.
Turley, N.E., Kania, S. E., Petitta, I.R., Otruba, E. A., Biddinger, D.J., Butzler, T.M., Sesler, V.V. & López-Uribe, M.M. (2024). Bee monitoring by community scientists: Comparing a collections-based program with iNaturalist. Annals of the Entomological Society of America, 117: 220-233.
Villalta, I., Bouget, C., Lopez-Vaamonde, C. & Baude, M. (2022). Phylogenetic, functional and taxonomic responses of wild bee communities along urbanisation gradients. Science of the Total Environment, 832: 154926.
Vereecken, N.J. (2017). A phylogenetic approach to conservation prioritization for Europe's bumblebees (Hymenoptera: Apidae: Bombus). Biological Conservation, 206: 21-30.
Voskamp, A., Baker, D.J., Stephens, P.A., Valdes, P.J. & Willis, S.G. (2017). Global patterns in the divergence between phylogenetic diversity and species richness in terrestrial birds. Journal of Biogeography, 44: 709-721.
Wcislo, W.T. & Cane, J.H. (1996). Floral resource utilization by solitary bees (Hymenoptera: Apoidea) and exploitation of their stored foods by natural enemies. Annual Review of Entomology, 41: 257-286.
Wcislo, W.T. & Danforth, B.N. (1997). Secondarily solitary: The evolutionary loss of social behavior. Trends in Ecology & Evolution, 12: 468-474.
Wheeler, Q. (2001). Systematics, overview. In S.A. Levin (Ed.), Encyclopedia of Biodiversity (Vol. 5, pp. 569-588). Academic Press.
Woodard, S. H., Federman, S., James, R. R., Danforth, B. N., Griswold, T. L., Inouye, D., McFrederick, Q. S., Morandin, L., Paul, D. L., Sellers, E., Strange, J. P., Vaughan, M., Williams, N. M., Branstetter, M. G., Burns, C. T., Cane, J., Cariveau, A. B., Cariveau, D. P., Childers, A., Childers, C., Cox-Foster, D.L., Evans, E.C., Graham, K.K., Hackett, K., Huntzinger, K.T., Irwin, R.E., Jha, S., Lawson, S., Liang, C., López-Uribe, M.M., Melathopoulos, A., Moylett, H.M.C., Otto, C.R.V., Ponisio, L.C., Richardson, L.L., Rose, R., Singh, R. & Wehling, W. (2020). Towards a U.S. national program for monitoring native bees. Biological Conservation, 252: 108821. https://doi.org/10.1016/j.biocon.2020.108821
Zattara, E.E. & Aizen, M.A. (2021). Worldwide occurrence records suggest a global decline in bee species richness. One Earth, 4: 114-123.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Eduardo A. B. Almeida, Margarita M. López-Uribe, Laurence Packer, Diego S. Porto, Gabriela P. Camacho

This work is licensed under a Creative Commons Attribution 4.0 International License.
Sociobiology is a diamond open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).