Evaluation of Motor Changes and Toxicity of Insecticides Fipronil and Imidacloprid in Africanized Honey Bees (Hymenoptera: Apidae)

Authors

  • Juliana Sartori Lunardi Departamento de Produção Animal - Faculdade de Medicina Veterinária e Zootecnia - Universidade Estadual Paulista - UNESP - Campus de Botucatu - São Paulo
  • Rodrigo Zaluski Departamento de Produção Animal - Faculdade de Medicina Veterinária e Zootecnia - Universidade Estadual Paulista - UNESP - Campus de Botucatu - São Paulo
  • Ricardo de Oliveira Orsi Departamento de Produção Animal - Faculdade de Medicina Veterinária e Zootecnia - Universidade Estadual Paulista - UNESP - Campus de Botucatu - São Paulo

DOI:

https://doi.org/10.13102/sociobiology.v64i1.1190

Keywords:

toxicology, systemic pesticides, beekeeping, pollinators, behavior

Abstract

Honey bees are important pollinators and are essential in beekeeping. Honey bees get exposed to systemic pesticides while foraging in contaminated fields, and it is important to know the toxicity (LD50) and evaluate the impacts of bees’ exposure to these molecules. Fipronil and imidacloprid are systemic pesticides widely used in Brazil and other countries. The objective of this study was to determine the LD50 (24 hours) and evaluate motor changes in Africanized honey bee foragers exposed to lethal and sublethal doses of fipronil and imidacloprid. To determine the LD50, foraging honey bees were exposed by ingestion and contact to five doses of fipronil (Regent 800WG®) and imidacloprid (Appalus 200SC®) insecticides. After 24 hours of exposure, the number of dead bees was counted, and the results were subjected to probit analysis. The motor activity of bees exposed by ingestion or contact to LD50 and sublethal doses (1/500th of the LD50) of both pesticides was assessed 4 hours after exposure using a behavioral observation box. The ingestion and contact with LD50 of fipronil were 0.0528±0.0090 and 0.0054±0.0041 μg/bee, respectively; the ingestion and contact with LD50 of imidacloprid were 0.0809±0.0135 and 0.0626±0.0080 μg/bee, respectively. Bees exposed to lethal and sublethal doses of both insecticides experienced significant motor alterations compared to the control, except for exposure to sublethal doses of fipronil by contact. Fipronil and imidacloprid are highly toxic and promote motor changes in bees. Thus, it is important to establish management methods to reduce pollinators’ exposure to these pesticides.

Downloads

Download data is not yet available.

Author Biographies

Juliana Sartori Lunardi, Departamento de Produção Animal - Faculdade de Medicina Veterinária e Zootecnia - Universidade Estadual Paulista - UNESP - Campus de Botucatu - São Paulo

Departamento de Produção Animal

Rodrigo Zaluski, Departamento de Produção Animal - Faculdade de Medicina Veterinária e Zootecnia - Universidade Estadual Paulista - UNESP - Campus de Botucatu - São Paulo

Departamento de Produção Animal

Ricardo de Oliveira Orsi, Departamento de Produção Animal - Faculdade de Medicina Veterinária e Zootecnia - Universidade Estadual Paulista - UNESP - Campus de Botucatu - São Paulo

Departamento de Produção Animal

References

Agência Nacional de Vigilância Sanitária – ANVISA (2016). Regularização de Produtos – Agrotóxicos. Monografias Autorizadas (F43 – Fipronil; I13 – Imidacloprido). http://portal.anvisa.gov.br/registros-e-autorizacoes/agrotoxicos/produtos/monografia-de-agrotoxicos/autorizadas. (accessed date: 07 July, 2016).

Agritox Database. (2016). Base de données sur les substances actives phytopharmaceutiques. http://www.agritox.anses.fr/php/fiches.php. (accessed date: 20 July, 2016).

Blacquiere, T., Smagghe, G., van Gestel, C. A. M. & Mommaerts, V. (2012). Neonicotinoids in bees: A review on concentrations, side-effects and risk assessment. Ecotoxicology, 21: 973-992. doi: 10.1007/s10646-012-0863-x

Bonmatin, J. M., Giorio, C., Girolami, V., Goulson, D., Kreutzweiser D. P., Krupke C., Liess, M., Long, E., Marzaro, M., Mitchell, E. A. D., Noome, D. A., Simon-Delso, N. & Tapparo, A. (2015). Environmental fate and exposure: Neonicotinoids and fipronil. Environmental Science and Pollution Research International, 22: 35-67. doi: 10.1007/s11356-014-3332-7

Botias, C., David, A., Horwood, J., Abdul-Sada, A., Nicholls, E., Hill, E. & Goulson, D. (2015). Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. Environmental Science & Technology, 49: 12731-12740. doi: 10.1021/acs.est.5b03459

Brown, L. A., Ihara, M., Buckingham, S. D., Matsuda, K. & Sattelle, D. B. (2006). Neonicotinoid insecticides display partial and super agonist actions on native insect nicotinic acetylcholine receptors. Journal of Neurochemistry, 99: 608-615. doi: 10.1111/j.1471-4159.2006.04084.x

Carrillo M. P., Bovi, T. S., Negrão, A. F. & Orsi, R. O. (2013). Influence of agrochemicals fipronil and imidacloprid on the learning behavior of Apis mellifera L. Acta Scientiarum. Animal Sciences, 35: 431-434. doi: 10.4025/actascianimsci.v35i4.18683

Chauzat, M. P., Faucon, J. P., Martel, A. C., Lachaize, J., Cougoule, N. & Aubert, M. (2006). A survey of pesticide residues in pollen loads collected by honey bees in France. Journal of Economic Entomology, 99: 253-262. doi: 10.1603/0022-0493-99.2.253

Ciarlo, T. J., Mullin, C. A., Frazier, J. L. & Schmehl, D. R. (2012). Learning impairment in honey bees caused by agricultural spray adjuvants. PLoS ONE, 7: e40848. doi: 10.1371/journal.pone.0040848

Colin, M. E., Bonmatin, J. M, Moineau, I., Gaimon, C., Brun, S. & Vermandere, J. P. (2004). A method to quantify and analyze the foraging activity of honey bees: Relevance to the sublethal effects induced by systemic insecticides. Archives of Environmental Contamination and Toxicology, 47: 387-395. doi: 10.1007/s00244-004-3052-y

Costa, L. M., Grella, T. C., Barbosa, R. A., Malaspina, O. & Nocelli, R. C. F. (2015). Determination of acute lethal doses (LD50 and LC50) of imidacloprid for the native bee Melipona scutellaris Latreille, 1811 (Hymenoptera: Apidae). Sociobiology 62: 578-582. doi: 10.13102/sociobiology.v62i4.792

Crane, E. (1990). Bees and Beekeeping: Science Practice and World Resources. Oxford: Heinemann Newnes, 614 p

Deglise, P., Grunewald, B. & Gauthier, M. (2002). The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neuroscience Letters 321: 13-16.

Freitas, B. M. & Pinheiro, J. N. (2010). Efeitos sub-letais dos pesticidas agrícolas e seus impactos no manejo de polinizadores dos agroecossistemas brasileiros. Oecologia Australis, 14: 282-298. doi: 10.4257/oeco.2010.1401.17

Gallai, N., Salles, J-M., Settele, J. & Vaissiere, B. E. (2009). Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics, 68: 810-821. doi: 10.1016/j.ecolecon.2008.06.014

Ghisi, N. C., Ramsdorf, W. A., Ferraro, M. V., Almeida, M. I., Ribeiro, C. A., & Cestari, M. M. (2011). Evaluation of genotoxicity in Rhamdia quelen (Pisces, Siluriformes) after sub-chronic contamination with fipronil. Environmental Monitoring and Assessment, 180:589–599. doi: 10.1007/s10661-010-1807-7

Greatti, M., Barbattini, R., Stravisi, A., Sabatini, A. G. & Rossi, S. (2006). Presence of the a.i. imidacloprid on vegetation near corn fields sown with Gaucho® dressed seeds. Bulletin of Insectology, 59: 99-103.

Johansen, C. A. & Mayer, D. F. (1990). Pollinator Protection: A Bee and Pesticide Handbook. Cheshire: Wicwas Press, 212 p

Krupke, C. H., Hunt, G. J., Eitzer, B. D., Andino, G. & Given, K. (2012). Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS ONE, 7: e29268. doi: 10.1371/journal.pone.0029268

Lu, C., Warchol, K. M. & Callahan, R. A. (2012). In situ replication of honey bee colony collapse disorder. Bulletin of Insectology, 65: 99-106.

Miranda, J. E., Navickiene, H. M. D., Nogueira-Couto, R. N., De Bortoli, S. A., Kato, M. J., Bolzani, V. S. & Furlan, M. (2003). Susceptibility of Apis mellifera (Hymenoptera: Apidae) to pellitorine, an amide isolated from Piper tuberculatum (Piperaceae). Apidologie, 34: 409-415. doi: 10.1051/apido:2003036

Mullin, C. A., Frazier, M., Frazier, J. L., Ashcraft, S., Simonds, R., vanEngelsdorp, D. & Pettis, J. S., (2010). High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS ONE, 5: e9754. doi: 10.1371/journal.pone.0009754

Narahashi, T., Zhao, X., Ikeda, T., Salgado, V. L. & Yeh, J. Z. (2010). Glutamate activated chloride channels: Unique fipronil targets present in insects but not in mammals. Pesticide Biochemistry and Physiology, 97: 149-152. doi: 10.1016/j.pestbp.2009.07.008

Oldroyd, P. B. (2007). What’s killing American honey bees? PLoS Biology, 5: e168. doi: 10.1371/journal.pbio.0050168

Orantes-Bermejo, F. J., Pajuelo, A. G., Megías, M. M. & Fernández-Píñar, C. T. (2010). Pesticide residues in beeswax and beebread samples collected from honey bee colonies (Apis mellifera L.) in Spain: Possible implications for bee losses. Journal of Apicultural Research, 48: 243-250. doi: 10.3896/IBRA.1.49.3.03

Pareja, L., Colazzo, M., Perez-Parada, A., Niell, S., Carrasco-Letelier, L., Besil, N., Cesio, M. V. & Heinzen, H. (2011). Detection of pesticides in active and depopulated beehives in Uruguay. International Journal of Environmental Research and Public Health, 8: 3844-3858. doi: 10.3390/ijerph8103844

Sanchez-Bayo, F. & Goka, K. (2014). Pesticide residues and bees: A risk assessment. PLoS ONE, 9: e94482. doi:10.1371/journal.pone.0094482

Sanchez-Bayo, F. & Goka, K. (2016). Impacts of pesticides on honey bees. In: E. D. Chambo (Ed.), Beekeeping and Bee Conservation - Advances in Research (pp 77-97). InTech: InTechOpen. doi: 10.5772/62487

Sanchez-Bayo, F., Yamashita, H., Osaka, R., Yoneda, M. & Goka, K. (2007). Ecological effects of imidacloprid on arthropod communities in and around a vegetable crop. Journal of Environmental Science Health Part B, 42: 279-286. doi: 10.1080/03601230701229239

Stokstad, E. (2007). The case of the empty hives. Science, 316: 970-972. doi: 10.1126/science.316.5827.970

Suchail, S., Guez, D. & Belzunces, L. P. (2001). Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environmental Toxicology and Chemistry, 20: 2482-2486. doi: 10.1002/etc.5620201113

van der Sluijis, J. P., Simon-Delso, N., Goulson, D., Maxim, L., Bonmatin, J. M. & Belzunces, L. P. (2013). Neonicotinoids, bee disorders and the sustainability of pollinator services. Current Opinion in Environmental Sustainability, 5: 293-305. doi: 10.1016/j.cosust.2013.05.007

van Engelsdorp, D. & Meixner, M. D. (2010). A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. Journal of Invertebrate Pathology, 103: S80-S95. doi: 10.1016/j.jip.2009.06.011

van Engelsdorp, D., Evans, J. D., Saegerman, C., Mullin, C., Haubruge, E., Nguyen, B. K., Frazier, M., Frazier, J., Cox-Foster, D., Chen, Y., Underwood, R., Tarpy, D.R. & Pettis, J. S. (2009). Colony collapse disorder: A descriptive study. PLoS ONE, 4: e6481. doi:10.1371/journal.pone.0006481

Zaluski, R., Kadri, S. M., Alonso, D. P., Ribolla, P. E. M. & Orsi, R. O. (2015). Fipronil promotes motor and behavioral changes in honey bees (Apis mellifera) and affects the development of colonies exposed to sublethal doses. Environmental Toxicology and Chemistry, 34: 1062-1069. doi: 10.1002/etc.2889

Zhu, W., Schmehl, D. R., Mullin, C. A. & Frazier, J. L. (2014). Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae. PLoS ONE, 9: e77547. doi:10.1371/journal.pone.0077547

Downloads

Published

2017-05-30

How to Cite

Lunardi, J. S., Zaluski, R., & Orsi, R. de O. (2017). Evaluation of Motor Changes and Toxicity of Insecticides Fipronil and Imidacloprid in Africanized Honey Bees (Hymenoptera: Apidae). Sociobiology, 64(1), 50–56. https://doi.org/10.13102/sociobiology.v64i1.1190

Issue

Section

Research Article - Bees

Most read articles by the same author(s)