Wind Speed Affects Pollination Success in Blackberries

Authors

  • Allison Young Michigan State University
  • Pilar Gomez-Ruiz Universidad Nacional Autonoma de Mexico
  • Janelle Pena University of Puerto Rico
  • Hiromi Uno University of California Berkeley
  • Rodolfo Jaffé Vale Institute of Technology - Sustainable Development

DOI:

https://doi.org/10.13102/sociobiology.v65i2.1620

Keywords:

Fruit-set, landscape, agroecology, sweetness

Abstract

Pollination of wild plants and agricultural crops is a vitally important ecosystem service. Many landscape and environmental factors influence the pollination success of crops, including distance from natural habitat, wind speed, and solar radiation. Although there is a general consensus that increasing distance from forest decreases pollination success, few studies have examined the influence of specific environmental factors. In this study, we examined which environmental factors influence the pollination success of blackberries (Rubus glaucus). We measured the number of fruitlets per berry, a proxy for pollination success, as well as the weight and sweetness of each berry. Our results indicate that number of fruitlets is positively correlated with wind speed, but number of unripe red berries per bush is negatively correlated with wind speed. In addition, sweetness increased with increasing numbers of red berries per bush but was lower when flowers and berries were present, though this result should be considered with caution due to methodological limitations. Our findings suggest that a little studied environmental factor, wind, has a large impact on the number of fruitlets in blackberries. Although our findings should be confirmed in other locations to draw broader conclusions, they suggest that producers should consider the effect of wind on blackberry yield to optimize blackberry production.

Downloads

Download data is not yet available.

References

Araújo, E. D., Costa, M., Chaud-Netto, J., & Fowler, H. G. (2004). Body size and flight distance in stingless bees (Hymenoptera: Meliponini): inference of flight range and possible ecological implications. Brazilian Journal of Biology, 64: 563-568. doi: 10.1590/S1519-69842004000400003

Bazzaz, F. A., Chiariello, N. R., Coley, P. D., & Pitelka, L. F. (1987). Allocating resources to reproduction and defense. BioScience, 37: 58-67. doi: 10.2307/1310178

Blanche, K. R., Ludwig, J. A., & Cunningham, S. A. (2006). Proximity to rainforest enhances pollination and fruit set in orchards. Journal of Applied Ecology, 43: 1182-1187. doi:10.1111/j.1365-2664.2006.01230.x

Boreux, V., Krishnan, S., Cheppudira, K. G., & Ghazoul, J. (2013). Impact of forest fragments on bee visits and fruit set in rain-fed and irrigated coffee agro-forests. Agriculture, Ecosystems and Environment, 172: 42-48. doi: 10.1016/j.agee. 2012.05.003

Brown, A. O., & McNeil, J. N. (2009). Pollination ecology of the high latitude, dioecious cloudberry (Rubus chamaemorus; Rosaceae). American Journal of Botany, 96: 1096-1107. doi: 10.3732/ajb.0800102

Brown, M. J., & Paxton, R. J. (2009). The conservation of bees: a global perspective. Apidologie, 40: 410-416. doi: 10.1051/apido/2009019

Burrill, R. M., & Dietz, A. (1981). The response of honey bees to variations in solar radiation and temperature. Apidologie, 12: 319-328. doi: 10.1051/apido:19810402

Cane, J. H. (2005). Pollination potential of the bee Osmia aglaia for cultivated red raspberries and blackberries (Rubus: Rosaceae). Hortscience, 40: 1705-1708. doi: 10.1098/rspb. 2006.3721

Carvalheiro, L. G., Seymour, C. L., Veldtman, R., & Nicolson, S. W. (2010). Pollination services decline with distance from natural habitat even in biodiversity-rich areas. Journal of Applied Ecology, 47: 810-820. doi: 10.1111/j.1365-2664. 2010.01829.x

Castro, J., & Cerdas, M. (2005). Mora (Rubus spp.) cultivo y manejo poscosecha. Ministerio de Agricultura y Ganadería; Universidad de Costa Rica; Consejo Nacional de Producción. San José (Costa Rica), 8.

Chacoff, N. P., Aizen, M. A., & Aschero, V. (2008). Proximity to forest edge does not affect crop production despite pollen limitation. Proceedings of the Royal Society of London B: Biological Sciences, 275: 907-913. doi: 10.1098/rspb.2007.1547

Constanza R, d’Arge R, De Groot R, Faber S, Grasso M, Hannon B, Raskin RG (1997) The value of the world’s ecosystem services and natural capital. Nature, 387: 253-260. doi: 10.1016/S0921-8009(98)00020-2

De Marco, P., & Coelho, F. M. (2004). Services performed by the ecosystem: forest remnants influence agricultural cultures’ pollination and production. Biodiversity and Conservation, 13: 1245-1255. doi: 10.1023/B:BIOC.0000019402.51193.e8

Dry, P. R., Reed, S., & Potter, G. (1988, May). The effect of wind on the performance of Cabernet Franc grapevines. In: Australian Temperate Fruits Review Conference 240: pp. 143-146. doi: 10.17660/ActaHortic.1989.240.24

Gallai, N., Salles, J. M., Settele, J., & Vaissière, B. E. (2009). Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics, 68: 810-821. doi: 10.1016/j.ecolecon.2008.06.014

Garibaldi, L. A., Carvalheiro, L. G., Vaissière, B. E., Gemmill-Herren, B., Hipólito, J., Freitas, B. M., ... & An, J. (2016). Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science, 351: 388-391. doi: 10.1126/science.aac7287

Greenleaf, S. S., Williams, N. M., Winfree, R., & Kremen, C. (2007). Bee foraging ranges and their relationship to body size. Oecologia, 153: 589-596. doi: 10.1007/s00442-007-0752-9

Hadley, A. S., & Betts, M. G. (2012). The effects of landscape fragmentation on pollination dynamics: absence of evidence not evidence of absence. Biological Reviews, 87: 526-544. doi: 10.1111/j.1469-185X.2011.00205.x

Jarau, S., & Barth, F. G. (2008). Stingless bees of the Golfo Dulce region, Costa Rica (Hymenoptera, Apidae, Apinae, Meliponini). Stapfia, 88, 267-276.

Jayasena, V., & Cameron, I. (2008). Brix/acid ratio as a predictor of consumer acceptability of Crimson Seedless table grapes. Journal of Food Quality, 31: 736-750. doi: 10.1111/j.1745-4557.2008.00231.x

Jennings, D. L. (1988). Raspberries and blackberries: their breeding, diseases and growth. Academic press.

Kennedy, C. M., Lonsdorf, E., Neel, M. C., Williams, N. M., Ricketts, T. H., Winfree, R., ... & Carvalheiro, L. G. (2013). A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecology Letters, 16: 584-599. doi: 10.1111/ele.12082

Klein, A. M., Vaissiere, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society of London B: Biological Sciences, 274: 303-313. doi: 10.1098/rspb.2006.3721

Kleinert-Giovannini, A., & Imperatriz-Fonseca, V. L. (1986). Flight activity and responses to climatic conditions of two subspecies of Melipona marginata Lepeletier (Apidae, Meliponinae). Journal of Apicultural Research, 25: 3-8. doi: 10.1080/00218839.1986.11100685

Kremen, C., Williams, N. M., & Thorp, R. W. (2002). Crop pollination from native bees at risk from agricultural intensification. Proceedings of the National Academy of Sciences, 99: 16812-16816. doi: 10.1073/pnas.262413599

Krishnan, S., Kushalappa, C. G., Shaanker, R. U., & Ghazoul, J. (2012). Status of pollinators and their efficiency in coffee fruit set in a fragmented landscape mosaic in South India. Basic and Applied Ecology, 13: 277-285. doi: 10.1016/j.baae.2012.03.007

Laurance, W. F., Sayer, J., & Cassman, K. G. (2014). Agricultural expansion and its impacts on tropical nature. Trends in Ecology and Evolution, 29: 107-116. doi: 10.1016/j.tree.2013.12.001

Link, H. (2000). Significance of flower and fruit thinning on fruit quality. Plant Growth Regulation, 31: 17-26. doi: 10.1023/A:1006334110068

Ollerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120: 321-326. doi: 10.1111/j.1600-0706.2010.18644.x

Ricketts, Taylor H., Williams, Neal M. and Mayfield, Margaret M. (2006). Connectivity and ecosystem services: Crop pollination in agricultural landscapes. In Kevin R. Crooks and M. A. Sanjayan (Ed.), Connectivity conservation (pp. 255-289) Cambridge, U.K.: Cambridge University Press.

Ricketts, T. H., Regetz, J., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., Bogdanski, A., Gemmill-Herren, B., Greenleaf, S.S., Klein, A.M., Mayfield, M.M., Morandin, L.A., Ochieng’, A., & Viana, B.F. (2008). Landscape effects on crop pollination services: are there general patterns? Ecology Letters, 11: 499-515. doi: 10.1111/j.1461-0248.2008.01157.x

Roubik, D. W. (1995). Pollination of cultivated plants in the tropics (No. 118). Food & Agriculture Organization of the United Nations.

Sáez, A., Morales, C. L., Ramos, L. Y., & Aizen, M. A. (2014). Extremely frequent bee visits increase pollen deposition but reduce drupelet set in raspberry. Journal of Applied Ecology, 51: 1603-1612. doi: 10.1111/1365-2664.12325

Steffan-Dewenter, I., & Kuhn, A. (2003). Honeybee foraging in differentially structured landscapes. Proceedings of the Royal Society of London B: Biological Sciences, 270: 569-575. doi: 10.1098/rspb.2002.2292

Strik, B. C., Clark, J. R., Finn, C. E., & Bañados, M. P. (2007). Worldwide blackberry production. HortTechnology, 17: 205-213. doi: 10.17660/ActaHortic.2008.777.31

Strik, B., Mann, J., & Finn, C. (1996). Percent drupelet set varies among blackberry genotypes. Journal of the American Society for Horticultural Science, 121: 371-373.

Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418: 671-677. doi: 10.1038/nature01014

Tosun, I., Ustun, N. S., & Tekguler, B. (2008). Physical and chemical changes during ripening of blackberry fruits. Scientia Agricola, 65: 87-90. doi: 10.1590/S0103-90162008000100012

Vergara, C. H., & Badano, E. I. (2009). Pollinator diversity increases fruit production in Mexican coffee plantations: the importance of rustic management systems. Agriculture, Ecosystems and Environment, 129: 117-123. doi: 10.1016/j.agee.2008.08.001

Wang, S. Y., Chen, C. T., & Wang, C. Y. (2009). The influence of light and maturity on fruit quality and flavonoid content of red raspberries. Food Chemistry, 112: 676-684. doi: 10.1016/j.foodchem.2008.06.032

Wenner, A. M. (1963). The flight speed of honeybees: a quantitative approach. Journal of Apicultural Research, 2: 25-32.doi: 10.1080/00218839.1963.11100053

Whiting, M. D., Lang, G., & Ophardt, D. (2005). Rootstock and training system affect sweet cherry growth, yield, and fruit quality. HortScience, 40: 582-586.

Downloads

Published

2018-07-09

How to Cite

Young, A., Gomez-Ruiz, P., Pena, J., Uno, H., & Jaffé, R. (2018). Wind Speed Affects Pollination Success in Blackberries. Sociobiology, 65(2), 225–231. https://doi.org/10.13102/sociobiology.v65i2.1620

Issue

Section

Research Article - Bees

Most read articles by the same author(s)