Effects of Termites on Soil pH and Its Application for Termite Control in Zhejiang Province, China
DOI:
https://doi.org/10.13102/sociobiology.v64i3.1674Keywords:
Termite, soil characteristics, pH, termite nest, termite controlAbstract
Soil dwelling termites dig nests in the ground that have a significant impact on the soil environment. Activities of termites can result in accumulation of organic matter and enrichment of nutrients and minerals in the soil. Samples from the nest/surrounding soils of two termite species (Odontotermes formosanus (Shiraki) and Reticulitermes flaviceps (Oshima)) and termite non-invaded soils in the seawall of the Qiantang River, Zhejiang Province, China were collected and analysed for soil pH. The results show that the observed termites prefer an acidic environment and that their activities elevate the pH of termite mound soil compared with surrounding soil. Considering the differences in the distribution areas, termite species, and properties of termite mounds and surrounding soils, this paper also examines the literature concerning the effects of termites on soil pH. After summarizing the pH of the termite survival soil environment, the feasibility of termite control by modifying the soil pH is addressed. Finally, some topics for future research are discussed.
Downloads
References
Abe, S.S. & Wakatsuki, T. (2010). Possible influence of termites (Macrotermes bellicosus) on forms and composition of free sesquioxides in tropical soils. Pedobiologia, 53: 301-306. doi: 10.1016/j.pedobi.2010.02.002.
Ackerman, I.L., Teixeira, W.G., Riha, S.J., Lehmann, J. & Fernandes, E.C.M.(2007). The impact of mound-building termites on surface soil properties in a secondary forest of Central Amazonia. Applied Soil Ecology, 37: 267-276. doi: 10.1016/j.apsoil.2007.08.005.
Afolabi, S.G., Ezenwa, M.I.S. & Dauda, A. (2014). Physical and chemical characteristics of mound materials and surrounding soils. PAT, 10: 186-192. Retrieved from: www.patnsukjournal.net/currentissue.
Akamigbo, F. (1984). The role of the Nasute termites in the genesis and fertility of Nigerian soils. Pedologie, 36: 79-89.
Anderson, J.M. & Wood, T.G. (1984). Mound composition and soil modification by two soil-feeding termites (Termitinae, Termitidae) in a riparian Nigerian forest. Pedobiologia, 26: 77-82.
Arshad, M.A. (1982). Influence of the termite Macrotermes michaelseni (Sjöst) on soil fertility and vegetation in a semi-arid savannah ecosystem. Agro-Ecosystems, 8: 47-58. doi: 10.1016/0304-3746(82)90014-2.
Arshad, M.A., Schnitzer, M. & Preston, C.M. (1988). Characterization of humic acids from the termite mounds and surrounding soils, Kenya. Geoderma, 42: 213-225. doi: 10.1016/ 0016-7061(88)90002-X.
Asawalam, D.O., Osodeke, V.E., Kamalu, O.J. &Ugwa, I.K. (1999). Effects of termites on the physical and chemical properties of the acid sandy soils of southern Nigeria.Communications in Soil Science and Plant Analysis, 30: 1691-1696. doi: 10.1080/00103629909370321.
Bagine, R.K.N. (1984). Soil translocation by termites of the genus Odontotermes (Holgren) (Isoptera: Macrotermitinae) in an arid area of northern Kenya. Oecologia, 64: 263-266. doi: 10.1007/BF00376880.
Brossard, M.,López-Hernández, D., Lepage, M. & Leprun, J. C. (2007). Nutrient storage in soils and nests of mound-building Trinervitermes termites in Central Burkina Faso: consequences for soil fertility. Biology and Fertility of Soils, 43: 437-447. doi: 10.1007/s00374-006-0121-6.
Chen, L.H. (2002). Cause and control of termite infestation at the northern seawall of Qiantang River. Zhejiang Hydrotechnics, 2: 34-35.
Chen, L.H., Pan, C.H., Chen, S.M., Song, X.G., Zheng, S.Z. & Chen, S.H.(2011). New technology of using salt to prevent termites for dikes and dams. Chinese Journal of Geotechnical Engineering, 33: 140-144.
Chen, S.-H., Shen, S.-J., Chen, L.-H. & Lu, G.-X. (2015). Test of engineering properties of impervious soil with salt. Advances in Science and Technology of Water Resources, 35: 66-70.
Dawes, T.Z. (2010). Reestablishment of ecological functioning by mulching and termite invasion in a degraded soil in an Australian savanna. Soil Biology and Biochemistry, 42: 1825-1834. doi: 10.1016/j.soilbio.2010.06.023.
Debelo, D.G. & Degaga, E.G. (2014). Studies on ecology of mound-building termites in the central rift valley of Ethiopia. International Journal of Agricultural Sciences, 4: 326-333.
de Bruyn, L.L.A. & Conacher, A.J. (1990). The role of termites and ants in soil modification: a review. Australian Journal of Soil Research, 28: 55-93. doi: 10.1071/SR9900055.
Donovan, S.E., Eggleton, P., Dubbin, W.E., Batchelder, M. & Dibog, L.(2001). The effect of a soil-feeding termite, Cubitermes fungifaber (Isoptera: Termitidae) on soil properties: termites may be an important source of soil microhabitat heterogeneity in tropical forests. Pedobiologia, 45: 1-11. doi: 10.1078/0031-4056-00063.
Ehigiator, J.O., Okunima, E.D., Edosa, V.I. & Airueghian, E. (2015). Use of termite mounds as an index of soil fertility and their effects on some properties of an environmentally degraded ultisols. Journal of Food, Agriculture and Environment, 13: 44-146. Retrieved from: http://world-food.net/download/2015-issue_3&4-environment/e5.pdf.
Erens, H., Mujinya, B.B., Mees, F., Baert, G., Boeckx, P., Malaisse, F. & Van Ranst, E. (2015). The origin and implications of variations in soil-related properties within Macrotermes falciger mounds. Geoderma, 249-250: 40-50. doi: 10.1016/j.geoderma.2015.03.003
Ezenwa, M.I.S. (1985). Comparative study of some chemical characteristics of mound materials and surrounding soils of different habitats of two termite species in Nigerian savanna. GEO-ECO-TROP, 9: 29-38.
Fageria, N.K. & Baligar, V.C. (2004). Properties of termite mound soils and responses of rice and bean to nitrogen, phosphorus, and potassium fertilization on such soil. Communications in Soil Science and Plant Analysis, 35: 2097-2109. doi: 10.1081/LCSS-200028919.
Garnier-Sillam, E. & Harry, M. (1995). Distribution of humic compounds in mounds of some soil-feeding termite species of tropical rainforests: its influence on soil structure stability.Insectes Sociaux, 42: 167-185. doi: 10.1007/BF01242453.
Gholami, A. & Riazi, F.(2012). Impact of termite activity on physical and chemical properties. Journal of Basic and Applied Scientific Research, 2:5 581-5582.
Gosling, C.M., Cromsigt, J.P.G.M., Mpanza, N. & Olff, H. (2012). Effects of erosion from mounds of different termite genera on distinct functional grassland types in an African savannah. Ecosystems, 15: 128-139. doi: 10.1007/s10021-011-9497-8.
Gupta, S.R., Rajvanshi, R. & Singh, J.S.(1981). The role of the termite Odontotermes gurdaspurensis (Isoptera: Termitidae) in plant decomposition in a tropical grassland. Pedobiologia, 22: 254-261.
Jouquet, P., Tessier, D. & Lepage, M. (2004). The soil structural stability of termite nests: role of clays in Macrotermes bellicosus (Isoptera, Macrotermitinae) mound soils. European Journal of Soil Biology, 40: 23-29. doi: 10.1016/j.ejsobi.2004.01.006.
Jouquet, P., Ranjard, L., Lepage, M. & Lata, J.C. (2005). Incidence of fungus-growing termites (Isoptera, Macrotermitinae) on the structure of soil microbial communities. Soil Biology and Biochemistry, 7: 1852-1859. doi: 10.1016/j.soilbio.2005.02.017.
Jouquet, P., Guilleux, N., Caner, L., Chintakunta, S., Ameline, M. & Shanbhag, R.R. (2016). Influence of soil pedological properties on termite mound stability. Geoderma, 262: 45-51. doi: 10.1016/j.geoderma.2015.08.020.
Kaschuk, G., Santos, J.C.P., Almeida, J.A., Sinhorati, D.C. & Berton-Junior, J.F. (2006). Termite activity in relation to natural grassland soil attributes. Scientia Agricola, 63: 583-588. doi: 10.1590/S0103-90162006000600013.
Ketch, L.A., Malloch, D., Mahaney, W.C. & Huffmanc, M.A. (2001). Comparative microbial analysis and clay mineralogy of soils eaten by chimpanzees (Pan troglodytes schweinfurthii) in Tanzania. Soil Biology and Biochemistry, 33: 199-203.doi: 10.1016/S0038-0717(00)00129-2.
Lee, K.E. & Wood, T.G.(1971). Physical and chemical effects on soils of some Australian termites and their pedological significance. Pedobiologia, 11: 376-409.
López-Hernández, D. (2001). Nutrient dynamics (C, N and P) in termite mounds of Nasutitermes ephratae from savannas of the Orinoco Llanos (Venezuela). Soil Biology and Biochemistry, 33: 747-753. doi: 10.1016/S0038-0717(00)00220-0.
López-Hernández, D. & Febres, A.(1984). Changements chimiques et granulométriques produits dans des sols de Côte d’Ivoire par la présence de trois espèces de termites. Revue d’Ecologie et de Biologie du Sol, 21: 477-489.
Mahaney, W.C., Zippin, J., Milner, M.W., Sanmugadas, K., Hancock, R.G.V., Aufreiter, S., Campbell, S., Huffman, M.A., Wink, M., Malloch, D. & Kalm, V. (1999). Chemistry, mineralogy and microbiology of termite mound soil eaten by the chimpanzees of the Mahale Mountains, Western Tanzania. Journal of Tropical Ecology, 15: 565-588. doi: 10.1017/S0266467499001029.
Malaka, S.L.O. (1977). A study of the chemistry and hydraulic conductivity of mound materials and soils from different habitats of some Nigerian termites. Australian Journal of Soil Research, 15: 87-91.
Ministry of Agriculture of the People’s Republic of China. (2007). Determination of pH in soil. NY/T 1377-2007. Retrieved from: http://www.doc88.com/p-6522013917098.html.
Mujinya, B.B., Van Ranst, E., Verdoodt, A., Baert, G. & Ngongo, L.M. (2010). Termite bioturbation effects on electro-chemical properties of Ferralsols in the Upper Katanga (D.R. Congo). Geoderma, 158: 233-241. doi: 10.1016/j.geoderma.2010.04.033.
Mujinya, B.B., Mees, F., Boeckx, P., Bodé, S., Baert, G., Erens, H., Delefortrie, S., Verdoodt, A., Ngongo, M. & Van Ranst, E.(2011). The origin of carbonates in termite mounds of the Lubumbashi area, D.R. Congo. Geoderma, 165: 95-105. doi: 10.1016/j.geoderma.2011.07.009.
Muvengwi, J., Mbiba, M. & Nyenda, T.(2013). Termite mounds may not be foraging hotspots for mega-herbivores in a nutrient-rich matrix. Journal of Tropical Ecology, 29: 551-558.doi: 10.1017/S0266467413000564.
Neupane, A., Maynard, D.S. & Bradford, M.A. (2015). Consistent effects of eastern subterranean termites (Reticulitermes flavipes) on properties of a temperate forest soil. Soil Biology and Biochemistry, 91: 84–91.doi: 10.1016/j.soilbio.2015.08.025
Nutting, W.L., Haverty, M.I. & La Fage, J.P. (1987). Physical and chemical alteration of soil by two subterranean termite species in Sonoran Desert grassland. Journal of Arid Environments, 12: 233-239.
Nye, P.H. (1955). Some soil forming processes in the humid tropics. IV. The action of soil fauna. Journal of Soil Science, 6: 73-83. doi: 10.1111/j.1365-2389.1955.tb00831.x.
Okello-Oloya, T., Spain, A.V. & John, R.D. (1985). Selected chemical characteristics of the mounds of two species of Amitermes (Isoptera, Termitinae) and their adjacent surface soils from north eastern Australia. Revue d’Ecologie et de Biologie du Sol, 22: 291-311.
Okwakol, M.J.N. (1987). Effects of Cubitermes testacus (Williams) on some physical and chemical properties of soil in a grassland area of Uganda. African Journal of Ecology, 25: 147-153.
Park, H.C., Majer, J.D. & Hobbs, R.J. (1994). Contribution of the Western Australian wheatbelt termite, Drepanotermes Tamminensis (Hill), to the soil nutrient budget. Ecological Research, 9: 351-356. doi: 10.1007/BF02348422.
Rao, A.N., Sravanthy, C.H. & Sammaiah, C.H.(2013). Diversity and density of termite mounds in Bhadrachalam forest region, Andhra Pradesh. The Bioscan, 8: 1-10.
Robert, O.E., Frank, U.O. & Agbonsalo, O.U. (2007). Influence of activities of termites on some physical and chemical properties of soils under different land use patterns: areview. International Journal of Soil Science, 2: 1-14.
Robinson, J.B.D. (1958). Some chemical characteristics of ‘termite soils’ in Kenya coffee fields. Journal of Soil Science, 9: 58-65. doi: 10.1111/j.1365-2389.1958.tb01897.x.
Roose-Amsaleg, C., Brygoo, Y. & Harry, M. (2004). Ascomycete diversity in soil-feeding termite nests and soils from a tropical rainforest. Environmental Microbiology, 6: 462-469. doi: 10.1111/j.1462-2920.2004.00579.x.
Roose-Amsaleg, C., Mora, P. & Harry, M. (2005). Physical, chemical and phosphatase activities characteristics in soil-feeding termite nests and tropical rainforest soils. Soil Biology and Biochemistry, 37: 1910-1917. doi: 10.1016/j.soilbio.2005.02.031.
Salick, J., Herrera, R. & Jordan, C.F. (1983). Termitaria: nutrient patchiness in nutrient deficient rain forests. Biotropica, 15:1-7. doi: 10.2307/2387990.
Samra, J.S., Tandon, P.L., Thakur, R.S. & Chadha, K.L. (1979). Comparison of physicochemical characteristics of the soils of termite galleries and the surrounding soil in mango orchards. Indian Journal of Agricultural Science, 49: 892-895.
Sarcinelli, T.S., Schaefer, C.E.G.R., Lynch, L.D.S., Arato, H.D., Viana, J.H.M., Filho, M.R.D.A. & Gonçalves, T.T. (2009). Chemical, physical and micromorphological properties of termite mounds and adjacent soils along a toposequence in Zona da Mata, Minas Gerais State, Brazil. Catena, 76: 107-113. doi: 10.1016/j.catena.2008.10.001.
Sheikh, K.H. & Kayani, S.A. (1982). Termite-affected soils in Pakistan. Soil Biology and Biochemistry, 14: 359-364.
SPSS Inc. (2007). SPSS Base 16.0 for Windows User’s Guide. Chicago: SPSS Inc. 736 p.
Su, N.-Y. (2002). Novel technologies for subterranean termite control. Sociobiology, 39: 1-7.
Su, N.-Y. & Scheffrahn, R.H. (1998). A review of subterranean
termite control practices and prospectsfor integrated pest management programmes. Integrated Pest Management
Reviews, 3: 1-13. doi: 10.1023/A:1009684821954.
Tian W.J., Ke Y.L., Zhuang T.Y., Wang C.X., Li M., Liu R.Q., Mao W.G., Zhang S.S. & Li, D. (2009). Incipient colony development and biology of Odontotermes formosanus (Shiraki) and O. hainanensis (Light) (Isoptera: Termitidae). Journal of Agricultural and Urban Entomology, 26: 147-156. doi: 10.3954/1523-5475-26.3.147.
Verma, M., Sharma, S. &Prasad, R. (2009). Biological alternatives for termite control: a review. International Biodeterioration and Biodegradation, 63: 959-972. doi: 10.1016/j.ibiod.2009.05.009.
Watson, J.P. (1962). The soil below a termite mound. Journal of Soil Science, 13: 46-51. doi: 10.1111/j.1365-2389.1962.tb00680.x.
Watson, J.P. (1969). Water movement in two termite mounds in Rhodesia. The Journal of Ecology, 57: 441-451. doi: 10.23 07/2258390.
Watson, J.P. (1972). Some observations on the water relations of mounds of Macrotermes natalensis (Haviland) fuller. Insectes Sociaux, 19: 87-93. doi: 10.1007/BF02224726.
Watson, J.P. (1977). The use of mounds of the termite Macrotermes falciger (Gerstäcker) as a soil amendment. Journal of Soil Science, 28: 664–72.
Wood, T.G., Johnson, R.A. & Anderson, J.M. (1983). Modification of soils in Nigerian savanna by soil-feeding Cubitermes (Isoptera, Termitidae). Soil Biology and Biochemistry, 15: 575-579. doi: 10.1016/0038-0717(83)90052-4.
Downloads
Published
How to Cite
Issue
Section
License
Sociobiology is a diamond open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).