Influence of Food Resource Size on the Foraging Behavior of Nasutitermes corniger (Motschulsky)
DOI:
https://doi.org/10.13102/sociobiology.v65i2.2844Keywords:
Arboreal termites, Nasutitermitinae, Eucalyptus grandis, foraging behavior, recruitment patternAbstract
In general, termite foraging can be affected by physical and chemical factors linked to food. This study investigated if the wood length of Eucalyptus grandis W. Hill ex Maiden, as a food resource, influences the behavior of foraging events of Nasutitermes corniger (Motschulsky). Nests with mature and active colonies were collected in the field and transferred to glass cubes connected to a test arena under laboratory conditions. Wooden blocks of E. grandis, with a 2.5 x 2.0 cm rectangular cross section, were offered to termites in three different lengths: 5, 10 and 15 cm. Each test was repeated with 20 nests and lasted 60 minutes, when the following behavioral events and their duration were observed: initial exploration, initial recruitment and mass recruitment. At the end of each test, the quantities of termites (total, workers and soldiers) and gnawing workers were determined. The results show that longer blocks favored a higher occurrence of exploration and initial recruitment. However, the highest mass recruitment occurred with the 10 cm blocks. The length of the wood influenced the total number of termites recruited and gnawing workers; both were highest for the 10 cm blocks. There was no significant difference in relation to exploration time of the blocks and number of workers and soldiers recruited. Therefore, we conclude that wood length is a factor that can affect N. corniger foraging.
Downloads
References
Albuquerque, A.C., Matias, G.R.R.S., Couto, A.A.V.O., Oliveira, M.A.P. & Vasconcellos, A. (2012). Urban Termites of Recife, Northeast Brazil (Isoptera). Sociobiology, 59: 183-188. doi: 10.13102/sociobiology.v59i1.675
Andara, C., Issa, S. & Jaffé, K. (2004). Decision-making systems in recruitment to food for two Nasutitermitinae (Isoptera: Termitidae). Sociobiology, 44: 139-151.
Arab, A. & Issa, S. (2000). Breves observaciones sobre el comportamiento de forrajeo de dos especies de termitas (Termitidae: Nasutitermitinae) bajo condiciones de laboratorio. Boletín de Entomología Venezolana, 15: 93-95.
Atkinson, L.; Adams, E.S. (1997). The origins and relatedness of multiple reproductives in colonies of the termite Nasutitermes corniger. Proceedings of the Royal Society of London: Biological Sciences, 264: 1131-1136. doi: 10.1098/rspb.1997.0156
Constantino, R. (2002). The pest termites of South America: taxonomy, distribution and status. Journal of Applied Entomology, 126: 355-365. doi: 10.1046/j.1439-0418.2002.00670.x
Cornelius, M.L. & Osbrink, W.L.A. (2001). Tunneling behavior, foraging tenacity, and wood consumption rates of Formosan and Eastern subterranean termites (Isoptera: Rhinotermitidae) in laboratory bioassays. Sociobiology, 37: 79-94.
Costa-Leonardo, A.M. (2002). Cupins-praga: morfologia, biologia e controle. Rio Claro: Divisa, 128 p
Dow AgroSciences. (2013). Sentricon® II technical manual 2013, advanced termite control. Michigan: The Dow Chemical Company. 20 p
Esenther, G.R. (1970). Termite bioassays show greatly varied tolerance to insecticides in bait blocks. Forest Products Journal, 29:55-56.
Evans, T.A., Lai, J.C.S., Toledano, E., McDowall, L., Rakotonarivo, S. & Lenz, M. (2005). Termites assess wood size by using vibration signals. Proceedings of the National Academy of Sciences of the United States of America, 102: 3732-3737. doi: 10.1073/pnas.0408649102
Evans, T.A., Inta, R., Lai, J.C.J. & Lenz, M. (2007). Foraging vibration signals attract foragers and identify food size in the drywood termite, Cryptotermes secundus. Insectes Sociaux, 54: 374-382. doi: 10.1007/s00040-007-0958-1
French, J.R.J., Robinson, P.J. & Ewart, D.M. (1986). Mound colonies of Coptotermes lacteus (Isoptera) eat cork in preference to sound wood. Sociobiology, 11: 303-309.
Fontes, L.R. & Milano, S. (2002). Termites as urban problem in South America. Sociobiology, 40: 104-151.
Gazal, V., Bailez, O. & Viana-Bailez, A.M. (2010). Wood preference of Nasutitermes corniger (Isoptera: Termitidae). Sociobiology, 55: 433-443.
Gazal, V., Bailez, O., Viana-Bailez, A.M., Aguiar-Menezes, E.L., Menezes, E.B. (2012). Decayed wood affecting the attraction of the pest arboretum termite Nasutitermes corniger (Isoptera: Termitidae) to resource foods. Sociobiology, 59: 287-295. doi: 10.13102/sociobiology.v59i1.684
Gazal, V., Bailez, O., Viana-Bailez, A.M., Aguiar-Menezes, E.L., Menezes, E.B. (2014a). Behavioral responses of the arboreal termite Nasutitermes corniger (Isoptera: Termitidae) to wood extracts. Wood Science and Technology, 48: 581-590. doi: 10.1007/s00226-014-0625-4
Gazal, V., Bailez, O., Viana-Bailez, A.M. (2014b). Mechanism of trail following by the arboreal termite Nasutitermes corniger (Isoptera: Termitidae). Zoological Science, 31: 1-5. doi: 10. 2108/zsj.31.1
Gerozisis, J., Hadlington, P. & Staunton, I. (2008). Urban pest management in Australia. Sydney: University of New South Wales Press, 326 p
Howick, C.D. (1975). Influence of specimen size, test period and matrix on the amounts of wood eaten by similar groups of laboratory termites. In B.W. Eades (ed.), Record of the 1975 Annual Convention of the British Wood Preserving Association (pp. 51-63). Birmingham: the American Wood Protection Association.
Hedlund, J.C. & Henderson, G. (1999). Effect of available food size on search tunnel formation by the Formosan subterranean termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 92: 610-616. doi: 10.1093/jee/92.3.610
Hu, X.P. & Appel, A.G. (2004). Seasonal variation of critical thermal limits and temperature tolerance in Formosan and Eastern subterranean termites (Isoptera: Rhinotermitidae). Environmental Entomology, 33: 197-205. doi: 10.1603/0046-225X-33.2.197
Lee, C.-Y. (2002). Subterranean termite pests and their control in the urban environment in Malaysia. Sociobiology, 40: 3-9.
Lenz, M. (1994). Food resources, colony growth and caste development in wood-feeding termites. In J.H. Hunt, C.A. Nalepa (Eds.), Nourishment and evolution in insect societies (pp. 159-209). Oxford: Westview Press.
Menezes, E.B., Aguiar-Menezes, E.L. & Bicalho, A.C. (2000). Cupim arbóreo Nastitermes spp., mais uma ameaça nas cidades. Vetores & Pragas, 2: 26-29.
Mill, A.E. (1991). Termites as structural pest in Amazonia, Brazil. Sociobiology, 19: 339-348.
Ogg, C., Ogg, B., Kamble, S., Ferraro, D. (2006). Termite baiting technologies. In C. Ogg, B. Ogg, S. Kamble & D. Ferraro (Eds.), Subterranean termites: handbook for home owners (pp. 33-35). Lincoln: Nebraska University.
Potter, M.F. (2004). Termite baits: a guide for homeowners. Lincoln: University of Kentucky, Department of Agriculture, Cooperative Extension Service. 6 p.
Santos, M.N., Teixeira, M.L.F., Pereira, M.B. & Menezes, E.B. (2010). Avaliação de estacas de Pinus sp. como isca-armadilha em diversos períodos de exposição a cupins subterrâneos. Floresta; 40: 29-36. doi: 10.5380/rf.v40i1.17096
Scheffrahn, R.H., Krecek, J., Szalanski, A.L. & Austin, J.W. (2005). Synonymy of Neotropical arboreal termites Nasutitermes corniger and N. costalis (Isoptera: Termitidae: Nasutitermitinae), with evidence from morphology, genetics, and biogeography. Annals of the Entomological Society of America, 98: 273-281. doi: 10.1603/0013-8746(2005)098[02 73:SONATN]2.0.CO;2
Souza, J.H., Aguiar-Menezes, E.L., Mauri, R. & Menezes, E.B. (2009). Susceptibility of five forest species to Coptotermes gestroi. Revista Árvore, 33: 1043-1050. doi: 10.1590/S0100-67622009000600007
Su, N.-Y. (2002). Novel technologies for subterranean termite control. Sociobiology, 39: 1-7.
Su, N.-Y., Thoms, E.M., Ban. P.M., Scheffrahn, R.H. (1995). Monitoring/baiting station to detect and eliminate foraging populations of subterranean termites (Isoptera: Rhinotermitidae) near structures. Journal of Economic Entomology, 88: 932-936. doi: 10.1093/jee/88.4.932
Swoboda, L.E. & Miller, D.M. (2004). Laboratory assays evaluate the influence of physical guidelines on subterranean termite (Isoptera: Rhinotermitidae) tunneling, bait discovery, and consumption. Journal of Economic Entomology, 97: 1404-1412. doi: 10.1603/0022-0493-97.4.1404
Torales, G.J. (2002). Termites as structural pests in Argentina. Sociobiology, 40: 191-206.
Thorne, B. (1981). Differences in nest architecture between the Neotropical arboreal termites N. corniger and N. ephratae (Isoptera: Termitidae). Psyche, 87: 223-243. doi: 10.1155/1980/12305
Traniello, J.F.A. (1981). Enemy deterrence in the recruitment strategy of a termite. Soldier organized foraging in Nasutitermes costalis. Proceedings of the National Academy of Sciences of the United States of America, 78: 1976-1979. doi: 10.1073/pnas.78.3.1976
Traniello, J.F.A. & Busher, C. (1985). Chemical regulation of foraging in the Neotropical termite Nasutitermes costalis. Journal of Chemical Ecology, 11: 319-332. doi: 10.1007/BF01411418
Traniello, J.F.A. & Leuthold, R.H. (2000). Behavior and ecology of foraging in termites. In T. Abe, D.E. Bignell & M. Higashi (Eds.), Termites: evolution, sociality, symbioses, ecology (pp. 141-168). London: Kluwer, Academic Publishers.
United Nations Environment Programme [UNEP]. (2000). Finding alternatives to persistent organic pollutants (POPs) for termite management. Retrived from: https://www.unep.org/chemicalsandwaste/sites/unep.org.chemicalsandwaste/files/publications/POPs%20Pesticides_Alternatives-termite-fulldocument.pdf
Usher, M.B. & Ocloo, J.K. (1974). An investigation of stake size and shape in “graveyard” fields tests for termite resistance. Journal of the Institute of Wood Science, 9: 32-36.
Waller, D.A. (1988). Host selection in subterranean termites: factors affecting choice (Isoptera: Rhinotermitidae). Sociobiology, 14: 5-13.
Waller, D.A. (1991). Feeding by Reticulitermes spp. Sociobiology, 19: 91-99.
Waller, D.A. & La Fage, J.P. (1987). Nutritional ecology of termites. In F. Slansky Jr. & J.G. Rodriguez (Eds.), Nutritional ecology of insects, mites, spiders, and related invertebrates (pp. 487-532). New York: John Wiley & Sons.
Wood, T.G. (1978). Food and feeding habits of termites. In M.V. Brian (Ed.), Production ecology of ants and termites (pp. 55-80). London: Cambridge University Press.
Downloads
Published
How to Cite
Issue
Section
License
Sociobiology is a diamond open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).