Influence of Food Resource Size on the Foraging Behavior of Nasutitermes corniger (Motschulsky)

Authors

  • Thiago Sampaio de Souza Programa de Pós-Graduação em Fitossanidade e Biotecnologia Aplicada, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica-RJ, Brazil
  • Vinícius Siqueira Gazal Departamento Entomologia e Fitopatologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica-RJ, Brazil
  • Vinicius José Fernandes Programa de Pós-Graduação em Fitossanidade e Biotecnologia Aplicada, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica-RJ, Brazil
  • Ana Carolina Campos de Oliveira Graduação em Agronomia, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica-RJ, Brazil
  • Elen de Lima Aguiar-Menezes Departamento Entomologia e Fitopatologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica-RJ, Brazil

DOI:

https://doi.org/10.13102/sociobiology.v65i2.2844

Keywords:

Arboreal termites, Nasutitermitinae, Eucalyptus grandis, foraging behavior, recruitment pattern

Abstract

In general, termite foraging can be affected by physical and chemical factors linked to food. This study investigated if the wood length of Eucalyptus grandis W. Hill ex Maiden, as a food resource, influences the behavior of foraging events of Nasutitermes corniger (Motschulsky). Nests with mature and active colonies were collected in the field and transferred to glass cubes connected to a test arena under laboratory conditions. Wooden blocks of E. grandis, with a 2.5 x 2.0 cm rectangular cross section, were offered to termites in three different lengths: 5, 10 and 15 cm. Each test was repeated with 20 nests and lasted 60 minutes, when the following behavioral events and their duration were observed: initial exploration, initial recruitment and mass recruitment. At the end of each test, the quantities of termites (total, workers and soldiers) and gnawing workers were determined. The results show that longer blocks favored a higher occurrence of exploration and initial recruitment. However, the highest mass recruitment occurred with the 10 cm blocks. The length of the wood influenced the total number of termites recruited and gnawing workers; both were highest for the 10 cm blocks. There was no significant difference in relation to exploration time of the blocks and number of workers and soldiers recruited. Therefore, we conclude that wood length is a factor that can affect N. corniger foraging.

Downloads

Download data is not yet available.

References

Albuquerque, A.C., Matias, G.R.R.S., Couto, A.A.V.O., Oliveira, M.A.P. & Vasconcellos, A. (2012). Urban Termites of Recife, Northeast Brazil (Isoptera). Sociobiology, 59: 183-188. doi: 10.13102/sociobiology.v59i1.675

Andara, C., Issa, S. & Jaffé, K. (2004). Decision-making systems in recruitment to food for two Nasutitermitinae (Isoptera: Termitidae). Sociobiology, 44: 139-151.

Arab, A. & Issa, S. (2000). Breves observaciones sobre el comportamiento de forrajeo de dos especies de termitas (Termitidae: Nasutitermitinae) bajo condiciones de laboratorio. Boletín de Entomología Venezolana, 15: 93-95.

Atkinson, L.; Adams, E.S. (1997). The origins and relatedness of multiple reproductives in colonies of the termite Nasutitermes corniger. Proceedings of the Royal Society of London: Biological Sciences, 264: 1131-1136. doi: 10.1098/rspb.1997.0156

Constantino, R. (2002). The pest termites of South America: taxonomy, distribution and status. Journal of Applied Entomology, 126: 355-365. doi: 10.1046/j.1439-0418.2002.00670.x

Cornelius, M.L. & Osbrink, W.L.A. (2001). Tunneling behavior, foraging tenacity, and wood consumption rates of Formosan and Eastern subterranean termites (Isoptera: Rhinotermitidae) in laboratory bioassays. Sociobiology, 37: 79-94.

Costa-Leonardo, A.M. (2002). Cupins-praga: morfologia, biologia e controle. Rio Claro: Divisa, 128 p

Dow AgroSciences. (2013). Sentricon® II technical manual 2013, advanced termite control. Michigan: The Dow Chemical Company. 20 p

Esenther, G.R. (1970). Termite bioassays show greatly varied tolerance to insecticides in bait blocks. Forest Products Journal, 29:55-56.

Evans, T.A., Lai, J.C.S., Toledano, E., McDowall, L., Rakotonarivo, S. & Lenz, M. (2005). Termites assess wood size by using vibration signals. Proceedings of the National Academy of Sciences of the United States of America, 102: 3732-3737. doi: 10.1073/pnas.0408649102

Evans, T.A., Inta, R., Lai, J.C.J. & Lenz, M. (2007). Foraging vibration signals attract foragers and identify food size in the drywood termite, Cryptotermes secundus. Insectes Sociaux, 54: 374-382. doi: 10.1007/s00040-007-0958-1

French, J.R.J., Robinson, P.J. & Ewart, D.M. (1986). Mound colonies of Coptotermes lacteus (Isoptera) eat cork in preference to sound wood. Sociobiology, 11: 303-309.

Fontes, L.R. & Milano, S. (2002). Termites as urban problem in South America. Sociobiology, 40: 104-151.

Gazal, V., Bailez, O. & Viana-Bailez, A.M. (2010). Wood preference of Nasutitermes corniger (Isoptera: Termitidae). Sociobiology, 55: 433-443.

Gazal, V., Bailez, O., Viana-Bailez, A.M., Aguiar-Menezes, E.L., Menezes, E.B. (2012). Decayed wood affecting the attraction of the pest arboretum termite Nasutitermes corniger (Isoptera: Termitidae) to resource foods. Sociobiology, 59: 287-295. doi: 10.13102/sociobiology.v59i1.684

Gazal, V., Bailez, O., Viana-Bailez, A.M., Aguiar-Menezes, E.L., Menezes, E.B. (2014a). Behavioral responses of the arboreal termite Nasutitermes corniger (Isoptera: Termitidae) to wood extracts. Wood Science and Technology, 48: 581-590. doi: 10.1007/s00226-014-0625-4

Gazal, V., Bailez, O., Viana-Bailez, A.M. (2014b). Mechanism of trail following by the arboreal termite Nasutitermes corniger (Isoptera: Termitidae). Zoological Science, 31: 1-5. doi: 10. 2108/zsj.31.1

Gerozisis, J., Hadlington, P. & Staunton, I. (2008). Urban pest management in Australia. Sydney: University of New South Wales Press, 326 p

Howick, C.D. (1975). Influence of specimen size, test period and matrix on the amounts of wood eaten by similar groups of laboratory termites. In B.W. Eades (ed.), Record of the 1975 Annual Convention of the British Wood Preserving Association (pp. 51-63). Birmingham: the American Wood Protection Association.

Hedlund, J.C. & Henderson, G. (1999). Effect of available food size on search tunnel formation by the Formosan subterranean termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 92: 610-616. doi: 10.1093/jee/92.3.610

Hu, X.P. & Appel, A.G. (2004). Seasonal variation of critical thermal limits and temperature tolerance in Formosan and Eastern subterranean termites (Isoptera: Rhinotermitidae). Environmental Entomology, 33: 197-205. doi: 10.1603/0046-225X-33.2.197

Lee, C.-Y. (2002). Subterranean termite pests and their control in the urban environment in Malaysia. Sociobiology, 40: 3-9.

Lenz, M. (1994). Food resources, colony growth and caste development in wood-feeding termites. In J.H. Hunt, C.A. Nalepa (Eds.), Nourishment and evolution in insect societies (pp. 159-209). Oxford: Westview Press.

Menezes, E.B., Aguiar-Menezes, E.L. & Bicalho, A.C. (2000). Cupim arbóreo Nastitermes spp., mais uma ameaça nas cidades. Vetores & Pragas, 2: 26-29.

Mill, A.E. (1991). Termites as structural pest in Amazonia, Brazil. Sociobiology, 19: 339-348.

Ogg, C., Ogg, B., Kamble, S., Ferraro, D. (2006). Termite baiting technologies. In C. Ogg, B. Ogg, S. Kamble & D. Ferraro (Eds.), Subterranean termites: handbook for home owners (pp. 33-35). Lincoln: Nebraska University.

Potter, M.F. (2004). Termite baits: a guide for homeowners. Lincoln: University of Kentucky, Department of Agriculture, Cooperative Extension Service. 6 p.

Santos, M.N., Teixeira, M.L.F., Pereira, M.B. & Menezes, E.B. (2010). Avaliação de estacas de Pinus sp. como isca-armadilha em diversos períodos de exposição a cupins subterrâneos. Floresta; 40: 29-36. doi: 10.5380/rf.v40i1.17096

Scheffrahn, R.H., Krecek, J., Szalanski, A.L. & Austin, J.W. (2005). Synonymy of Neotropical arboreal termites Nasutitermes corniger and N. costalis (Isoptera: Termitidae: Nasutitermitinae), with evidence from morphology, genetics, and biogeography. Annals of the Entomological Society of America, 98: 273-281. doi: 10.1603/0013-8746(2005)098[02 73:SONATN]2.0.CO;2

Souza, J.H., Aguiar-Menezes, E.L., Mauri, R. & Menezes, E.B. (2009). Susceptibility of five forest species to Coptotermes gestroi. Revista Árvore, 33: 1043-1050. doi: 10.1590/S0100-67622009000600007

Su, N.-Y. (2002). Novel technologies for subterranean termite control. Sociobiology, 39: 1-7.

Su, N.-Y., Thoms, E.M., Ban. P.M., Scheffrahn, R.H. (1995). Monitoring/baiting station to detect and eliminate foraging populations of subterranean termites (Isoptera: Rhinotermitidae) near structures. Journal of Economic Entomology, 88: 932-936. doi: 10.1093/jee/88.4.932

Swoboda, L.E. & Miller, D.M. (2004). Laboratory assays evaluate the influence of physical guidelines on subterranean termite (Isoptera: Rhinotermitidae) tunneling, bait discovery, and consumption. Journal of Economic Entomology, 97: 1404-1412. doi: 10.1603/0022-0493-97.4.1404

Torales, G.J. (2002). Termites as structural pests in Argentina. Sociobiology, 40: 191-206.

Thorne, B. (1981). Differences in nest architecture between the Neotropical arboreal termites N. corniger and N. ephratae (Isoptera: Termitidae). Psyche, 87: 223-243. doi: 10.1155/1980/12305

Traniello, J.F.A. (1981). Enemy deterrence in the recruitment strategy of a termite. Soldier organized foraging in Nasutitermes costalis. Proceedings of the National Academy of Sciences of the United States of America, 78: 1976-1979. doi: 10.1073/pnas.78.3.1976

Traniello, J.F.A. & Busher, C. (1985). Chemical regulation of foraging in the Neotropical termite Nasutitermes costalis. Journal of Chemical Ecology, 11: 319-332. doi: 10.1007/BF01411418

Traniello, J.F.A. & Leuthold, R.H. (2000). Behavior and ecology of foraging in termites. In T. Abe, D.E. Bignell & M. Higashi (Eds.), Termites: evolution, sociality, symbioses, ecology (pp. 141-168). London: Kluwer, Academic Publishers.

United Nations Environment Programme [UNEP]. (2000). Finding alternatives to persistent organic pollutants (POPs) for termite management. Retrived from: https://www.unep.org/chemicalsandwaste/sites/unep.org.chemicalsandwaste/files/publications/POPs%20Pesticides_Alternatives-termite-fulldocument.pdf

Usher, M.B. & Ocloo, J.K. (1974). An investigation of stake size and shape in “graveyard” fields tests for termite resistance. Journal of the Institute of Wood Science, 9: 32-36.

Waller, D.A. (1988). Host selection in subterranean termites: factors affecting choice (Isoptera: Rhinotermitidae). Sociobiology, 14: 5-13.

Waller, D.A. (1991). Feeding by Reticulitermes spp. Sociobiology, 19: 91-99.

Waller, D.A. & La Fage, J.P. (1987). Nutritional ecology of termites. In F. Slansky Jr. & J.G. Rodriguez (Eds.), Nutritional ecology of insects, mites, spiders, and related invertebrates (pp. 487-532). New York: John Wiley & Sons.

Wood, T.G. (1978). Food and feeding habits of termites. In M.V. Brian (Ed.), Production ecology of ants and termites (pp. 55-80). London: Cambridge University Press.

Downloads

Published

2018-07-09

How to Cite

Souza, T. S. de, Gazal, V. S., Fernandes, V. J., Oliveira, A. C. C. de, & Aguiar-Menezes, E. de L. (2018). Influence of Food Resource Size on the Foraging Behavior of Nasutitermes corniger (Motschulsky). Sociobiology, 65(2), 291–298. https://doi.org/10.13102/sociobiology.v65i2.2844

Issue

Section

Research Article - Termites