A Scientific Note of Housekeeping Genes for the Primitively Eusocial bee Euglossa viridissima Friese (Apidae: Euglossini)


  • Samuel Boff University of Milan
  • Anna Friedel University of Martin Luther
  • Anja Miertsch Martin Luther University
  • J. Javier Quezada-Euàn Universidad Autónoma de Yucatán, Mérida-Xmatkuil, Mexico
  • Robert J Paxton Martin Luther University
  • H. Michael G Lattorff International Centre of Insect Physiology and Ecology




developmental stage, gene expression, orchid bees, gene normalization


Studies on the expression of genes in different contexts are essential to our understanding of the functioning of organisms and their adaptations to the environment. Gene expression studies require steps of normalization, which are done using the stable expression pattern of reference genes. For many different eusocial bees reference genes have been discovered, but not for the primitively eusocial euglossine bees.We used available genomic resources of euglossine species and the gene information of Apis melliferato develop a set of reference genes for the primitive eusocial bee Euglossaviridissima. We tested nine genes in distinct developmental stages three different algorithms to infer the stability of gene expression. The Tata binding protein(Tbp) and 14-3-3epsilon were the most stable genes across all different stages. The strongest deviation in gene expression pattern occurred in pupae, which require a different set of genes for normalizing gene expression. 


Download data is not yet available.

Author Biographies

Samuel Boff, University of Milan

Department of Food, Environmental and Nutritional Sciences

Anna Friedel, University of Martin Luther

General Zoology

Anja Miertsch, Martin Luther University

General Zoology

J. Javier Quezada-Euàn, Universidad Autónoma de Yucatán, Mérida-Xmatkuil, Mexico

Departamento de Apicultura Tropical, Campus Ciencias Biológicas y Agropecuarias-

Robert J Paxton, Martin Luther University

Head of General zoology department

H. Michael G Lattorff, International Centre of Insect Physiology and Ecology

Environmental Health


Berg, D., Holzmann, C., & Riess, O. (2003). 14-3-3 proteins in the nervous system. Nature Reviews Neuroscience, 4: 752. doi: 10.1038/nrn1197

Brand, P., Saleh, N., Pan, H., Li, C., Kapheim, K. M., & Ramírez, S. R. (2017). The nuclear and mitochondrial genomes of the facultatively eusocial orchid bee Euglossa dilemma. G3: Genes, Genomes, Genetics, 7: 2891-2898.


Chen C, Xie T, Ye S, Jensen AB, Eilenberg J. (2016). Selection of reference genes for expression analysis in the entomophthoralean fungus Pandora neoaphidis. Brazilian Journal of Microbiology, 47: 259-265. doi:10.1016/j.bjm.2015.11.031.

Dallacqua, R. P., Simões, Z. L. P., & Bitondi, M. M. G. (2007). Vitellogenin gene expression in stingless bee workers differing in egg-laying behavior. Insectes Sociaux, 54: 70-76. https://doi.org/10.1007/s00040-007-0913-1

Elsik, C. G., Tayal, A., Diesh, C. M., Unni, D. R., Emery, M. L., Nguyen, H. N., & Hagen, D. E. (2015). Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine. Nucleic acids research, 44: 793-800. https://doi.org/10.1093/nar/gkv1208

Hennessey, E. S., Drummond, D. R., & Sparrow, J. C. (1993). Molecular genetics of actin function. Biochemical Journal, 291: 657-671.

Horňáková, D., Matoušková, P., Kindl, J., Valterová, I., & Pichová, I. (2010). Selection of reference genes for real-time polymerase chain reaction analysis in tissues from Bombus terrestris and Bombus lucorum of different ages. Analytical Biochemistry, 397: 118-120. https://doi.org/10.1016/j.ab.2009.09.019

Jones, B. M., Kingwell, C. J., Wcislo, W. T., & Robinson, G. E. (2017). Caste-biased gene expression in a facultatively eusocial bee suggests a role for genetic accommodation in the evolution of eusociality. Proceeding of the Royal Society B, 284: 20162228. doi: 10.1098/rspb.2016.2228

Khanlou, K. M., & Van Bockstaele, E. (2012). A critique of widely used normalization software tools and an alternative method to identify reliable reference genes in red clover (Trifolium pratense L.). Planta, 236: 1381-1393. doi 10.1007/s00425-012-1682-2

Kapheim, K. M., Pan, H., Li, C., Salzberg, S. L., Puiu, D., Magoc, T., ... & Hernandez, A. (2015). Genomic signatures of evolutionary transitions from solitary to group living. Science, 348: 1139–1143. doi: 10.1126/science.aaa4788

Kubista, M., Andrade, J. M., Bengtsson, M., Forootan, A., Jonák, J., Lind, K., Sindelka, R., Sjöback, R., Sjögreen, B., Strömbom, L., & Ståhlberg, A. Zoric, N. (2006). The real-time polymerase chain reaction. Molecular Aspects of Medicine, 27: 95-125. doi: org/10.1016/j.mam.2005.12.007

Livak, K.J. & Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25: 402-408. doi: 10.1006/meth.2001.1262

Lockett, G. A., Almond, E. J., Huggins, T. J., Parker, J. D., & Bourke, A. F. (2016). Gene expression differences in relation to age and social environment in queen and worker bumble bees. Experimental Gerontology, 77: 52-61. https://doi.org/10.1016/j.exger.2016.02.007

Locke, B., Forsgren, E., Fries, I. and de Miranda, J.R. (2012). Acaricide treatment affects viral dynamics in Varroa destructorinfested honey bee colonies via both host physiology and mite control. Applied and Environmental Microbiology, 78: 227-235. doi: 10.1128/AEM.06094-11

Lourenço, A. P., Mackert, A., dos Santos Cristino, A., & Simões, Z. L. P. (2008). Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie, 39: 372-385. https://doi.org/10.1051/apido:2008015

Marygold, S.J., Attrill, H. & Lasko, P. (2017). The translation factors of Drosophila melanogaster. Fly, 11: 65-74. doi: 10.1080/19336934.2016.1220464

Niu, J., Cappelle, K., de Miranda, J. R., Smagghe, G. & Meeus, I. (2014). Analysis of reference gene stability after Israeli acute paralysis virus infection in bumblebees Bombus terrestris. Journal of Invertebrate Pathology, 115: 76–79. https://doi.org/10.1016/j.jip.2013.10.011

Santos, C. G., & Hartfelder, K. (2015). Insights into the dynamics of hind leg development in honey bee (Apis mellifera L.) queen and worker larvae-A morphology/differential gene expression analysis. Genetics and Molecular Biology, 38: 263-277.


Untergrasser, A. C. I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., & Rozen, S. G. (2012). Primer3web —new capabilities and interfaces. Nucleic Acids Resources, 40: e115. doi: 10.1093/nar/gks596

Woodard, S. H., Fischman, B. J., Venkat, A., Hudson, M. E., Varala, K., Cameron, S. A., Clark, A. G., Robinson, G. E. (2011). Genes involved in convergent evolution of eusociality in bees. Proceedings of the National Academy of Sciences, 108: 7472-7477. https://doi.org/10.1073/pnas.1103457108

Xie, F., Sun, G., Stiller, J. W., & Zhang, B. (2011). Genome-wide functional analysis of the cotton transcriptome by creating an integrated EST database. PloS One, 6: e26980. https://doi.org/10.1371/journal.pone.0026980

Yüzbaşıoğlu, A., Onbaşılar, İ., Kocaefe, C., & Özgüç, M. (2010). Assessment of housekeeping genes for use in normalization of real time PCR in skeletal muscle with chronic degenerative changes. Experimental and Molecular Pathology, 88: 326-329. doi: 10.1016/j.yexmp.2009.12.007




How to Cite

Boff, S., Friedel, A., Miertsch, A., Quezada-Euàn, J. J., Paxton, R. J., & Lattorff, H. M. G. (2018). A Scientific Note of Housekeeping Genes for the Primitively Eusocial bee Euglossa viridissima Friese (Apidae: Euglossini). Sociobiology, 65(4), 766–769. https://doi.org/10.13102/sociobiology.v65i4.3428



Short Note