Litter Quality Affects Termite Sheeting Production and Water Infiltration in the Soil
DOI:
https://doi.org/10.13102/sociobiology.v66i3.3741Keywords:
Bait consumption, Odontotermes spp., India, Forest, foraging activityAbstract
This study aimed to understand the relationship between termite food preferences and the ecological benefits derived from their activity in terms of soil dynamics and water infiltration. A field study was carried out for six months with different food baits (elephant dung, Acacia leaves, twigs and leaves of Lantana camara as well as Ficus religiosa, Pterocarpus marsupium, Prosopis juliflora, Michelia champaca, Azadirachta indica and Hevea brasiliensis wood stakes) installed on the soil surface in a semi-deciduous forest in southern India. At the end of the experiment we determined bait consumption rates and the amount of soil sheetings covering the different baits. Water infiltration rates were also measured using the Beerkan method. The initial infiltration rates (i.e. average of the first three infiltration rates) under the baits were compared to those at the end of the experiment (average of the last three infiltration rates when the steady state was reached). Three termite species, Odontotermes obesus, O. feae and Microtermes obesi, were found associated with some of the baits in the study area. Among the different baits, elephant dung and Acacia leaves were the most preferred and a relationship was observed between the quantity of soil sheetings and the bait consumption rate. Termite preference for elephant dung and Acacia leaves was also associated with higher water infiltration rates. However, this difference was only significant at the beginning of the experiment and no significant difference was measured once the steady state was reached. In conclusion, we showed that resource quality was of primary importance for soil sheeting production but that the influence of termites on water infiltration remained limited, most likely because of the low stability of their tunnels in the soil.Downloads
References
Bignell, D.E. (2006). Termites as soil engineers and soil processors. In Intestinal microorganisms of termites and other invertebrates. Springer Berlin Heidelberg. pp 183-220.
Bottinelli, N., Jouquet, P., Capowiez, Y., Podwojewski, P., Grimaldi, M. & Peng, X. (2015). Why is the influence of soil macrofauna on soil structure only considered by soil ecologists? Soil Tillage Research. 146: 118-124. doi : 10.1016/j.still.2014.01.007
Braud, I., De Condappa, D., Soria, J. M., Haverkamp, R., Angulo‐Jaramillo, R., Galle, S. & Vauclin, M. (2005). Use of scaled forms of the infiltration equation for the estimation of unsaturated soil hydraulic properties (the Beerkan method). European Journal of Soil Science, 56: 361-374. doi: 10.1111/j.1365-2389.2004.00660.x
Collins, N.M. (1981). The role of termites in the decomposition of wood and leaf litter in the southern Guinea savanna of Nigeria. Oecologia, 51: 389-399.
Dangerfield, J.M., McCarthy, T.S. & Ellery, W.N. (1998). The mound-building termite Macrotermes michaelseni as an ecosystem engineer. Journal of Tropical Ecology, 14: 507- 520.
Elkins, N.Z., Sabol, G.Z., Ward, T.J. & Whitford, W.G. (1986). The influence of subterranean termites on the hydrological characteristics of a Chihuahuan desert ecosystem. Oecologia, 68(4): 521–528.
Fatondji, D., Martius, C., Bielders, C.L., Koala, S., Vlek, P.L.G. & Zougmore, R. (2009). Decomposition of organic amendment and nutrient release under the Zai technique in the Sahel. Nutrient Cycling in Agroecosystem, 85: 225–239. doi: 10.1007/s10705-009-9261-z
Freymann, B.P., Buitenwerf, R., Desouza, O. & Olff, H. (2008). The importance of termites (Isoptera) for the recycling of herbivore dung in tropical ecosystems: a review. European Journal of Entomology, 105: 65–173.
Freymann, B.P., de Visser, S.N. & Olff, H. (2010). Spatial and temporal hotspots of termite driven decomposition in the Serengeti. Ecography, 33: 443–450. doi: 10.1111/j.1600-0587.2009.05960.x
Harit, A., Moger, H., Duprey, J.L., Gajalakshmi, S., Abbasi, S.A., Subramanian, S. & Jouquet, P. (2017a). Termites can have greater influence on soil properties through the construction of soil sheetings than the production of above-ground mounds. Insectes Sociaux, 64: 247–253. doi: 10.1007/s00040-017-0541-3
Harit, A., Shanbhag, R.R., Chaudhary, E., Cheik, S. & Jouquet, P. (2017b). Properties and functional impact of termite sheetings. Biology and Fertility of Soils, 53: 743-749. doi: 10.1007/s00374-017-1228-7
Harry, M., Jusseaume, N., Gambier, B. & Garnier-Sillam, E. (2001). Use of RAPD markers for the study of microbial community similarity from termite mounds and tropical soils. Soil Biology and Biochemistry, 33(4-5): 417–427. doi: 10.1016/S0038-0717(00)00181-4
Haverkamp, R., Ross, P.J., Smettem, K.R.J. & Parlange, J.Y. (1994). Three‐dimensional analysis of infiltration from the disc infiltrometer: 2. Physically based infiltration equation. Water Resources Research, 30: 2931-2935. doi: 10.1029/94WR01788
He, S. (2013). Comparative Metagenomic and Metatranscriptomic Analysis of hindgut Paunch Microbiota in Wood and dung Feeding Higher Termite. Plos One 8 (4), E61126. doi: 10.1371/journal.pone.0061126
Herrick, J.E. & Lal, R. (1996). Dung decomposition and pedoturbation in a seasonally dry tropical pasture. Biology and Fertility of Soils, 23: 177-181. doi: 10.1007/BF00336060
Holt, J. A. & Lepage, M. (2000). Termites and soil properties. In Abe, T.; Bignell, D. E., Higashi, M. (eds.). Termites: Evolution, Sociality, Symbiosis, Ecology. Kluwer Academic Publishers, Dordrecht, 389–407. doi: 10.1007/978-94-017-3223-9_18
Jones, C.G., Lawton, J.H. & Shachak, M. (1994). Organisms as ecosystem engineers. Oikos, 69: 373–386. doi: 10.1007/978-1-4612-4018-1_14
Jouquet, P., Lepage, M. & Velde, B. (2002). Termite soil preferences and particle selections: Strategies related to ecological requirements. Insectes Sociaux, 49(1): 1–7. doi: 10.1007/s00040-002-8269-z
Jouquet, P., Mery, T., Rouland, C. & Lepage, M. (2003). Modulated effect of the termite Ancistrotermes cavithorax (Isoptera, Macrotermitinae) on soil properties according to the internal mound structures. Sociobiology, 42(2): 403-412.
Jouquet, P., Ranjard, L., Lepage, M. & Lata, J. (2005). Incidence of fungus-growing termites (Isoptera, Macrotermitinae) on the structure of soil microbial communities. Soil Biology and Biochemistry, 37(10): 1852–1859. doi: 10.1016/j.soilbio.2005.02.017
Jouquet, P., Dauber, J., Lagerlof, J., Lavelle, P. & Lepage, M. (2006). Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedback loops. Applied Soil Ecology, 32: 153-164. doi: 10.1016/j.apsoil.2005.07.004
Jouquet, P., Traoré, S., Choosai, C., Hartmann, C. & Bignell, D. (2011). Influence of termites on ecosystem functioning. Ecosystem services provided by termites. European Journal of Soil Biology, 47(4): 215-222. doi: 10.1016/j.ejsobi.2011.05.005
Jouquet, P., Guilleux, N., Chintakunta, S., Mendez, M. & Shanbhag, R.R. (2015). The influence of termites on soil sheeting properties varies depending on the materials on which they feed. European Journal of Soil Biology, 69: 74-78. doi: 10.1016/j.ejsobi.2015.05.007
Jouquet, P., Bottinelli, N., Shanbhag, R.R., Bourguignon, T., Traoré, S. & Abbasi, S.A. (2016). Termites: the neglected soil engineers of tropical soils. Soil Science, 181: 157–165. doi: 10.1097/SS.0000000000000119
Jouquet, P., Chaudhary, E. & Kumar, A.R.V. (2018). Sustainable use of termite activity in agro-ecosystems with reference to earthworms. A review. Agronomy for Sustainable Development 38, 3. doi: 10.1007/s13593-017-0483-1
Kaiser, D., Lepage, M., Konaté, S. & Linsenmair, K.E. (2017). Ecosystem services of termites (Blattoidea: Termitoidae) in the traditional soil restoration and cropping system Zaï in northern Burkina Faso (West Africa). Agriculture, Ecosystems & Environment, 236: 198-211. doi: 10.1016/j.agee.2016.11.023
Konaté, S., Le Roux, X., Tessier, D. & Lepage, M. (1999). Influence of large termitaria on soil characteristics, soil water regime, and tree leaf shedding pattern in a West African savanna. Plant & Soil, 206: 47-60. doi: 10.1023/A:1004321023536
Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., Margerie, P., Mora, P. & Rossi, J.-P. (2006). Soil invertebrates and ecosystem services. European Journal of Soil Biology, 42: 3-15. doi: 10.1016/j.ejsobi.2006.10.002
Lebedev, V.G., Vidyagina, E.O., Larionova, A.A. & Shestibratov, K.A. (2017). Decomposition of leaves, stems and roots of transgenic Aspen with the xyloglucanase (sp-Xeg) gene under laboratory microcosm conditions. Environments, 4: 4. doi: 10.3390/environments4010004
Léonard, J. & Rajot, J.L. (2001). Influence of termites on runoff and infiltration: quantification and analysis. Geoderma, 104: 17–40. doi: doi.org/10.1016/S0016-7061(01)00054-4
Léonard, J., Perrier, E. & Rajot, J. L. (2004). Biological macropores effect on runoff and infiltration: a combined experimental and modelling approach. Agriculture, Ecosystems & Environment, 104: 277–285. doi: 10.1016/j.agee.2003.11.015
Lobry de Bruyn, L.A. & Conacher, A.J. (1990). The role of termites and ants in soil modification: A review. Australian Journal of Soil Research, 28: 55–93. doi: 10.1071/SR9900055
Mando, A., Stroosnijder, L. & Brussaard, L. (1996). Effects of termites on infiltration into crusted soil. Geoderma, 74: 107–113. doi: 10.1016/S0016-7061(96)00058-4
Mando, A. & Miedema, R. (1997). Termite-induced change in soil structure after mulching degraded (crusted) soil in the Sahel. Applied Soil Ecology, 6: 241-249. doi: 10.1016/S0929-1393(97)00012-7
Mando, A., Brussaard, L. & Stroosnijder, L. (1999). Termite- and mulch-mediated rehabilitation of vegetation on crusted soil in West Africa. Restoration Ecology, 7: 33–41. doi: 10.1046/j.1526-100X.1999.07104.x
Mettrop, I.S., Cammeraat, L.H. & Verbeeten, E. (2013). The impact of subterranean termite activity on water infiltration and topsoil properties in Burkina Faso. Ecohydrology 6, 324–331. doi: 10.1002/eco.1271
Moe, S.R., Mobaek, R. & Narmo, A.K. (2009). Mound building termites contribute to savanna vegetation heterogeneity. Plant Ecology, 202: 31–40. doi: 10.1007/s11258-009-9575-6
Ouédraogo, E., Mando, A. & Brussaard, L. (2006). Soil macrofauna affect crop nitrogen and water use efficiencies in semi-arid West Africa. European Journal of Soil Biology, 42: 275-277. doi: 10.1016/j.ejsobi.2006.07.021
Pringle, R.M., Doak, D.F., Brody, A.K., Jocqué, R. & Palmer, T.M. (2010). Spatial pattern enhances ecosystem functioning in an African savanna. PLoS Biology 8, 1000377. doi: • 10.1371/journal.pbio.1000377
Priyanka, N. & Joshi, P.K. (2013). A review of Lantana camara studies in India. International Journal of Scientific and Research Publications 3, 1-11. doi:
R Development Core Team, 2008. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (accessed at bhttp://www.R-project.orgN.). doi:
Schaefer, D.A. & Whitford, W.G. (1981). Nutrient cycling by the subterranean termite Gnathamitermes tubiformans in a Chihuahuan Desert ecosystem. Oecologia, 48: 277–283. doi: 10.1007/BF00347977
Shanbhag, R.R. & Sundararaj, R. (2013a). Effect of physical and chemical properties of imported woods on the degradation by termites in Indian condition. Journal of Insect Science, 13: 63. doi: 10.1673/031.013.6301
Shanbhag, R.R. & Sundararaj, R., (2013b). Imported wood decomposition by termites in different agro eco zones of India. International Biodeterioration & Biodegradation, 85: 16–22. doi: 10.1016/j.ibiod.2013.03.037
Sileshi, G.W., Arshad, M.A., Konaté, S. & Nkunika, P.O.Y. (2010). Termite-induced heterogeneity in African savanna vegetation: mechanisms and patterns. Journal of Vegetation Science, 21: 923-937. doi: 10.1111/j.1654-1103.2010.01197.x
Snowdon, P., Ryan, P. & Raison, J. (2005). Review of C:N ratios in vegetation, litter and soil under Australian native forests and plantations. National Carbon Accounting System Technical Report No. 45. Australian Greenhouse Office.
Sousa, E.O. & Costa, J.G.M. (2012). Genus Lantana: chemical aspects and biological activities. Brazilian Journal of Pharmacognosy, 22: 1155-1180. doi: 10.1590/S0102-695X2012005000058
Sundararaj, R., Shanbhag, R.R., Nagaveni, H.C. & Vijayalakshmi, G. (2015). Natural Durability of Timbers under Indian environmental condition. An overview. International Biodeterioration & Biodegradation, 103: 196–214. doi: 10.1016/j.ibiod.2015.04.026
Turner, J.S. (2004). Extended phenotypes and extended organisms. Biology and Philosophy 19, 327–352. doi: 10.1023/B:BIPH.0000036115.65522.a1
Verma, M., Sharma, S. & Prasad, R. 2009. Biological alternatives for termite control: A review. International Biodeterioration & Biodegradation, 63: 959-972. doi: 10.1016/j.ibiod.2009.05.009
Wood, T.G. & Sands, W.A. (1978). The Role of Termites in Ecosystems. In Production Ecology of Ants and Termites; Brian, M.V., Ed.; Cambridge University Press: Cambridge, UK, 245–292.
Yuan, Z., Hu, X.P., 2012. Repellent, antifeedant, and toxic activities of Lantana camara leaf extract against Reticulitermes flavipes (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 105: 2115-2121. doi: 10.1603/EC12026
Downloads
Published
How to Cite
Issue
Section
License
Sociobiology is a diamond open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).