Morphometric Changes in Three Species of Euglossini (Hymenoptera: Apidae) in Response to Landscape Structure
DOI:
https://doi.org/10.13102/sociobiology.v66i2.3779Keywords:
Agroforestry system, Atlantic Forest, environmental stress, fragmentation, geometric morphometrics, solitary beeAbstract
Fragmentation and expansion of agricultural activities are sufficient factors for strongly impacting the biodiversity. Thus, sustainable practices of land use, such as agroforestry systems, are adopted with proposal of improving environmental quality and restore ecological processes. In flying insects, fragmentation may cause changes in the wing shape and size. Therefore, we evaluated the wing size and shape of three species of Euglossini (Eulaema atleticana Nemésio, Euglossa cordata (Linnaeus) and Euglossa ignita Smith) at response to landscape structure. The analysed specimens were collected in five areas, four forest areas with strong anthropic influence and an agroforestry system area. The results of the wing shape analysis have showed that the individuals of the three collected species within the agroforestry system diverge significantly (p<0.05) from those collected in the other areas. On the wings of Eg. cordata and Eg. ignita, differences in shape have occurred mainly in the medial region, which actively participates in the individual's flying ability. The wing size has showed meaningful difference only to the population of Eg. ignita (p=0,005). For Eg. cordata and El. atleticana, there was a significant correlation (r<0.05) between the morphometric data and the landscape metrics, which shows a close relationship between these species and the forest cover. The wing shape and size pursue an important function for the individual's ability in the environment, such as dispersion capacity and fertility rate, respectively. We concluded that the morphometric differences can reveal the existence of environmental stress for the biodiversity, therefore, contribute for environmental quality monitoring studies.
Downloads
References
Adams, D.C., Rohlf F.J. & Slice E.D. (2004). Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology 71:5-16
Aguiar, W. M., Sofia, S.H, Melo, G.A.R. & Gaglianone, M.C. (2015). Changes in orchid bee communities across forest-agroecosystem boundaries in Forest Atlantic Forest landscapes. Environmental Entomology 44: 1465-1471. doi: 10.1093/ee/nvv130
Aguiar, W.M. & Gaglianone, M.C. (2008). Comunidade de abelhas Euglossina (Hymenoptera: Apidae) em remanescentes de mata Estacional Semidecidual sobre Tabuleiro no estado do Rio de Janeiro. Neotropical Entomology 37:118–125
Bai.Y, Ma, L.B., Xu, S.Q. & Wang, G.H. (2015). A geometric morphometric study of the wing shapes of Pieris rapae (Lepidoptera:Pieridae) from the Qinling Mountains and adjacent regions: an environmental and distance-based consideration. Florida Entomological Society 98:162-169. doi:10.1653/024.098.0128
Benítez, H., Briones, R. & Jerez, V. (2008). Asimetria fluctuante en dos poblaciones de Ceroglossus chilensis (Eschscholtz, 1829) (Coleoptera: Carabidae) en el agroecosistema Pinus radiata D. don Region Del Bio-Bio, Chile. Gayana 72:131-139
Benjamin, F.E., Reilly, J.R. & Winfree, R. (2014). Pollinator body size mediates the scale at which land use drives crop pollination services. Journal of Applied Ecology 51:440–449. doi: 10.1111/1365-2664.12198
Bennett, A.F. & Saunders, D.A. (2010). Habitat fragmentation and landscape change. In: Sodhi NS, Ehrlich PR (Eds.), Conservation Biology for All (pp.88-106) Oxford: Oxford.
University Press.
Bookstein, F.L. (1989). Principal warps, thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11:567-585
Brosi, B.J. (2009). The effects of forest fragmentation on euglossine bee communities (Hymenoptera: Apidae: Euglossini). Biological Conservation 142:414-423. doi:10.1016/j.biocon.2008.11.003
Cardinael, R., Chevallier, T., Cambou, A., Béral, C., Barthès, B.G., Dupraz, C. et al. (2017). Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France. Agriculture, Ecosystems and Environment 236:243-255. doi: 10.1016/j.agee.2016.12.011
Chown, S.L. & Gaston, K.J. (2010). Body size variation in insects: a macroecological perspective. Biological Reviews 85:139-169
Dellicour, S., Gerard, M., Prunier, J.G., Dewulf, A., Kuhlmann, M. & Michez, D. (2017). Distribution and predictors of wing shape and size variability in three sister species of solitary bees. PLoS ONE. doi:10.1371/journal.pone.0173109
Dressler, R.L. (1982). Biology of the orchid bees (Euglossini). Annual Review of Ecology, Evolution, and Systematics 13:373-394
Francoy, T.M., Franco, F.F. & Roubik, D.W. (2012). Integrated landmark and outline-based morphometric methods efficiently distinguish species of Euglossa (Hymenoptera, Apidae, Euglossini). Apidologie 43:609-617. doi: 10.1007/s13592-012-0132-2
Freiria, G.A., Garófalo, C.A. & Del Lama, M.A. (2017). The primitively social behavior of Euglossa cordata (Hymenoptera, Apidae, Euglossini): a view from the perspective of kin selection theory and models of reproductive skew. Apidologie. doi: 10.1007/s13592-017-0496-4
Ghosh, S.M., Testa, N.D. & Shingleton, A.W. (2013).Temperature-size rule is mediated by thermal plasticity of critical size in Drosophila melanogaster. Proceedings of the Royal Society Biological Sciences 280:1-8. doi: http://dx.doi.org/10.1098/rspb.2013.0174
IBGE (Instituto Brasileiro de Geografia e Estatística). (2012). Manual técnico da vegetação brasileira. IBGE, Rio de Janeiro, 271p
Jauker, B., Krauss, J., Jauker, F. & Steffan-Dewenter, I. (2013). Linking life history traits to pollinator loss in fragmented calcareous grasslands. Landscape Ecology 28:107–120. doi: 10.1007/s10980-012-9820-6
Johansson, F., Soderquist, M. & Bokma, F. (2009). Insect wing shape evolution: independent effects of migratory and mate guarding flight on dragonfly wings. Biological Journal of the Linnean Society 97:362–372
Hammer, O., Harper, D.A.T. & Ryan, P.D. (2001). PAST: Paleontological Statistics software package for education and data analysis. Paleontologia Electronica 4:1-9
Hill, J.D., Thomas, C.D., Lewis, O.T. (1999). Flight morphology in fragmented populations of a rare British butterfly, Hesperia comma. Biological Conservation 87:277-283
Kennedy, C.M., Lonsdorf, E., Neel, M.C., Williams, N.M., Ricketts, T.H., Winfree, R. et al. (2013). A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecology Letters 16: 584-599. doi: 10.1111/ele.12082
Kingsolver, J.G. & Huey, R.B. (2008). Size, temperature, and fitness: three rules. Evolutionary Ecology Research 10:251-268
Klingenberg, C.P. (2008). MORPHOJ. Faculty of Life Scienses, University of Manchester, UK. Version (2008). Disponível em: http://www.flywings.org.uk/morphoj_page.htm. Acesso em: 09 set. 2015
Kremen, C., Williams, N.M. & Thorp, R.W. (2002). Crop pollination from native bees at risk from agricultural intensification. Proceedings of the National Academy of Sciences, USA 99:16812–16816. doi:10.1073pnas.262413599
Mcgarical, K. & Ene, E. (2013). Fragstats 4.2: A spatial pattern analysis program for categorical maps. Copyright
Matos, M.C.B., Sousa-Souto, L., Almeida, R.S. & Teodoro, A.V. (2013). Contrasting patterns of species richness and composition of solitary wasps and bees (Insecta-Hynenoptera) according to land use. Biotropa 45:73-79. doi: 10.1111/j.1744-7429.2012.00886.x
Merckx, T. & Van Dyck, H. (2006). Landscape structure and phenotypic plasticity in flight morphology in the butterfly Pararge aegeria. Oikos 113:226-232
Moczek, A.P. (2010). Phenotypic plasticity and diversity in insects. Philosophical Transactions of the Royal Society 365:593-603.doi: 10.1098/rstb.2009.0263
Monteiro, L.R. & Reis, S.F. (1999). Princípios de morfometria geométrica. Ribeirão Preto: Holos, 198 p
Nascimento, A., Fischer, C.M., Pierini, C., Fischer, F., Rocha, L., Matos, L.B. et al. (2007) Baixo Sul da Bahia: uma proposta de desenvolvimento territorial. Salvador: CIAGS/UFBA, 224 p
Nemésio A (2009) Orchid bees (Hymenoptera: Apidae) of the Brazilian Atlantic Forest. Zootaxa. New Zeland: Magnolia Press, 242 p
Neves, C.M.L., Carvalho, C.A.L., Souza, A.V. & Lima Junior, C.A. (2012). Morphometric Characterization of a Population of Tetrapedia diversipes in Restricted Areas in Bahia, Brazil (Hymenoptera: Apidae). Sociobiology 59:767-782
Nijhout, H.F. & Callier, V. (2015). Developmental mechanisms of body size an wing-body scaling in insects. Annual Review of Entomology 60:141-156. doi: 10.1146/annurev-ento-010814-020841
Nunes, L.A., Passos, G.B., Carvalho, C.A.L. & Araújo, E.D. (2013). Size and shape in Melipona quadrifasciata anthidioides Lepeletier, 1836 (Hymenoptera; Meliponini). Brazilian Journal of Biology 73:887-893. doi: 10.1590/S1519-69842013000400027
Outomuro, D., Dijkstra, D.B. & Johansson, F. (2013). Habitat variation and wing coloration affect wing shape evolution in dragonflies. Journal of Evolutionary Biology 26:1866-1874. doi: 10.1111/jeb.12203
Pokorny, T., Loose, D., Dyker, G., Quezada-Euán, J.J.G. & Eltz, T. (2014) Dispersal ability of male orchid bees and direct evidence for long-range flights. Apidologie. doi: 10.1007/s13592-014-0317-y
Prudhomme, J., Cassan, C., Hide, M., Toty, C., Rahola, N., Vergnes, B. et al. (2016). Ecology and morphological variations in wings of Phlebotomus ariasi (Diptera: Psychodidae) in the region of Roquedur (Gard France): a geometric morphometrics approach. Parasites and Vectors 578:1-13. doi: 10.1186/s13071-016-1872-z
Reed, T.E., Schindler, D.E. & Waples, R.S. (2011). Interacting effects of phenotypic plasticity and evolution on population persistence in a changing climate. Conservation Biology 25:56-63. doi:10.1111/j.1523-1739.2010.01552.x
Renauld, M., Hutchinson, A., Loeb, G., Poveda, K. & Connelly, H. (2016). Landscape simplification constrains adult size in a native ground-nesting bee. PLoS ONE. doi:10.1371/journal.pone.0150946
Richtsmeier, J.T., Deleon, V.B. & Lele, S.R. (2002). The promise of geometric morphometrics. Yeardbook of Physical Anthropology 45: 63-91. doi: 10.1002/ajpa.10174
Rohlf, F.J. (2010). Relative warps-tpsRelw, version 1.49. Department of Ecology and Evolution, State University of New York, Suny at Stony Brook
Rohlf, F.J. (2013). tps Utility program, version 1.60. Department of Ecology and Evolution, State University of New York, Suny at Stony Brook
Rohlf, F.J. (2015). tpsDig2, version 2.18.Department of Ecology and Evolution, State University of New York, Suny at Stony Brook
Silva, M.C., Lomônaco, C., Augusto, S.C. & Kerr, W.E. (2009). Climatic and anthropic influence on size and fluctuating asymmetry of Euglossine bees (Hymenoptera, Apidae) in a semideciduous seasonal forest reserve. Genetics and Molecular Research 8:730-737
Sistla, S.A., Roddy, A.B., Williams, N.E., Kramer, D.B., Stevens, K. & Allison, S.D. (2016). Agroforestry practices promote biodiversity and natural resource diversity in Atlantic Nicaragua. PLoS ONE. doi:10.1371/journal.pone.0162529
Skandalis, D.A., Tattersall, S.P. & Richards, M.H. (2009). Body size and shape of the large Carpenter bee, Xylocopoda virginica (L.) (Hymenoptera: Apidae). Journal of the Kansas Entomological Society 82: 30-42. doi: 10.2317/JKES711.05.1
Torralba, M., Fagerholm, N., Burgess, P.J., Moreno, G. & Plieninger, T. (2016). Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agriculture, Ecosystems and Environment 230:150-161. doi: 10.1016/j.agee.2016.06.002
Wang, J., Ren, C., Cheng, H., Zou, Y., Bughio, M.A. & Li, Q. (2017). Conversion of rainforest into agroforestry and monoculture plantation in China: Consequences for soil phosphorus forms and microbial community. Science of the Total Environment 595:769-778. doi: 10.1016/j.scitotenv.2017.04.012
Whitman, D.W. & Agrawal, A.A. (2009). What is phenotypic plasticity and why is it important? In: Whitman, D.W. & Ananthakrishnan, T.N. (Eds), Phenotypic Plasticity of Insects. (pp.1-63). USA: Science Publishers, Enfield.
Downloads
Published
How to Cite
Issue
Section
License
Sociobiology is a diamond open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).