The Odorant-Binding Protein Gene obp11 Shows Different Spatiotemporal Roles in the Olfactory System of Apis mellifera ligustica and Apis cerana cerana

Authors

  • Hongxia Zhao South china agriculture university
  • Yuexiong Luo Guangdong Entomological Institute, Guangzhou , 510260;
  • Jianghong Lee Fujian Agriculture and Forestry University, Fuzhou, 350002
  • Xuefeng Zhang Guangdong Entomological Institute, Guangzhou , 510260
  • qin Liang Fujian Agriculture and Forestry University, Fuzhou, 350002
  • Xinnian Zeng South China Agricultural University, Guangzhou, 510642

DOI:

https://doi.org/10.13102/sociobiology.v60i4.429-435

Keywords:

odorant-binding protein, olfactory, Apis

Abstract

Odorant-binding proteins participate in the olfactory system of the honeybee. Apis mellifera ligustica and Apis cerana cerana are species of honeybee that have different biologic functions. The two species have diversified olfactory systems, with A. cerana displaying sensitive olfactory involvement in collecting nectar and pollen from small plants; and A. mellifera collecting from large nectariferous plants. We hypothesized that, given this difference in biologic activity, the gene obp11 of A. mellifera and A. cerana may show different olfactory expression patterns. We cloned and sequenced the obp11 genes from A. mellifera (Amobp11) and A. cerana (Acobp11). Using quantitative real-time PCR, we demonstrated that nurse workers, which have the highest olfactory sensitivity in the A. mellifera hive, have the highest expression of Amobp11; whereas 1-day-emerged  workers, which have lowest olfactory sensitivity, have correspondingly low expression. However, the highest expression of Acobp11 is observed for foragers, which display the highest olfactory sensitivity in the A. cerana population. The OBP11 protein from the two species is highly conserved, with an apparent molecular weight and predicted extracellular localization that is similar to other OBP proteins. The expression of the obp11 gene in A. mellifera and A. cerana correlates with the different roles of the olfactory system for the two different species. These findings support the critical role of odorant-binding proteins in the Apis olfactory system

Downloads

Download data is not yet available.

Author Biography

Hongxia Zhao, South china agriculture university

 South China Agricultural University, Guangzhou, 510642;2 Guangdong EntomologicalInstitute, Guangzhou , 510260

References

Beekman M., Fathke RL. & Seeley TD. (2006). How does an informed minority of scouts guide a honeybee swarm as it flies to its new home. An. Behav., 71: 161-171. DOI: https://doi.org/10.1016/j.anbehav.2005.04.009

Ben-Shahar Y. (2005). The foraging gene, behavioral plasticity, and honeybee division of labor. J. Compar. Physiol. A, 191: 987-994. DOI: https://doi.org/10.1007/s00359-005-0025-1

Ben-Shahar Y., Robichon A., Sokolowski MB. & Robinson GE. (2002). Influence of gene action across different time scales on behavior. Science, 296: 741-744. DOI: https://doi.org/10.1126/science.1069911

Calderone NW. (1998). Proximate mechanisms of age polyethism in the honey bee, Apis mellifera L. Apidologie, 29: 127-158. DOI: https://doi.org/10.1051/apido:19980108

Danty E., Michard-vanhee C., Huet JC., Genecque E., Pernollet JC. & Masson C. (1997). Biochemical characterization, molecular cloning and localization of a putative odorant-binding protein in the honey bee Apis mellifera L. (Hymenoptera: Apidea). FEBS Lett., 414: 595-598. DOI: https://doi.org/10.1016/S0014-5793(97)01048-X

Forêt S. & Maleszka R. (2006). Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Gen. Res., 16: 1404-1413. DOI: https://doi.org/10.1101/gr.5075706

Francesca RD., Immacolata I. & Antonio F. (2010). Mapping the Expression of Soluble Olfactory Proteins in the Honeybee. J. Prot. Res., 9, 1822-1833. DOI: https://doi.org/10.1021/pr900969k

Ferguson AW. & Free JB. (1980). Queen pheromone transfer within honeybee colonies. Physiol. Entomol., 5, 359-366. DOI: https://doi.org/10.1111/j.1365-3032.1980.tb00245.x

Honeybee Genome Sequencing Consortium. (2006). Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 443, 931-949. DOI: https://doi.org/10.1038/nature05260

Johnson BR. (2003). Organization of work in the honeybee: a compromise between division of labour and behavioural flexibility. Proc. Roy. Soc. London. B Biol., 270: 147-152. DOI: https://doi.org/10.1098/rspb.2002.2207

Johnson BR. (2008a). Global information sampling in the honey bee. Naturwissensch-aften, 95: 523-530. DOI: https://doi.org/10.1007/s00114-008-0354-3

Johnson BR. (2008b). Within-nest temporal polyethism in the honeybee. Behav. Ecol. Sociobiol., 62: 777-784. DOI: https://doi.org/10.1007/s00265-007-0503-2

Johnson BR. (2010). Division of labor in honeybees: form, function, and proximate mechanisms. Behav. Ecol. Sociobiol. 64: 305-316. DOI: https://doi.org/10.1007/s00265-009-0874-7

Le Conte Y, Mohammedi A. & Robinson GE. (2001). Primer effects of a brood pheromone on honeybee behavioural development. Proc. Roy. Soc. London. B Biol., 268: 163-168. DOI: https://doi.org/10.1098/rspb.2000.1345

Le Conte Y. & Hefetz A. (2008). Primer Pheromones in Social Hymenoptera. Annu. Rev. Entomol., 53: 523-542. DOI: https://doi.org/10.1146/annurev.ento.52.110405.091434

Lee HL, Zhang YL, Gao QK, Cheng JA. & Lou BG. (2008). Molecular Identification of cDNA, Immunolocalization, and Expression of a Putative Odorant-Binding Protein from an Asian Honey Bee, Apis cerana cerana. J. Chem. Ecol., 34: 1593-1601. DOI: https://doi.org/10.1007/s10886-008-9559-3

Masson C. & Arnold G. (1984). Ontogeny, maturation, and plasticity of the olfactory system in the worker bee. J. Insect Physiol., 30: 7-14. DOI: https://doi.org/10.1016/0022-1910(84)90104-5

Maisonnasse A, Lenoir JC, Costagliola G, Beslay D. &Choteau F. (2009). A scientific note on E-β-ocimene, a new volatile primer pheromone that inhibits worker ovary development in honey bees. Apidologie, 40: 562-564. DOI: https://doi.org/10.1051/apido/2009024

Maisonnasse A, Lenoir JC, Beslay D, Crauser D. & Le Conte Y. (2010). E-β-ocimene, a Volatile Brood Pheromone Involved in Social Regulation in the Honey Bee Colony (Apis mellifera). PLoS ONE 5(10): e13531. doi: 10.1371/ journal. pone. 0013531. DOI: https://doi.org/10.1371/journal.pone.0013531

Moritz RFA. & Crewe RM. 1991. The volatile emission of honeybee queens(Apis mellifera L). Apidologie, 22, 205-212. DOI: https://doi.org/10.1051/apido:19910304

Pankiw T. (2007). Brood pheromone modulation of pollen forager turnaround time in the honey bee (Apis mellifera L.). J. Insect Beh., 20: 173-180. DOI: https://doi.org/10.1007/s10905-007-9071-6

Peters L, Zhu-Salzman K. & Pankiw T. (2010) Effect of primer pheromones and pollen diet on the food producing glands of worker honey bees (Apis mellifera L.). J. Insect Physiol., 56: 132-137. DOI: https://doi.org/10.1016/j.jinsphys.2009.09.014

Petersen TN, Brunak S, Heijne GV. & Nielsen H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8: 785-786. DOI: https://doi.org/10.1038/nmeth.1701

Sarah E, Radloff F, Hepburn C, et al. (2010). Population structure and classification of Apis cerana. Apidologie, 41: 589-601.

Qin QH, He XJ, Zeng ZJ, et al. (2012). Comparison of learning and memory of Apis cerana and Apis mellifera. The Journal of Comparative Physiology,198: 777-786. DOI: https://doi.org/10.1007/s00359-012-0747-9

Slessor KN., Winston ML. & Le Conte Y. (2005). Pheromone communication in the honeybee (Apis mellifera L.). J. Chem. Ecol., 31: 2731-2745. DOI: https://doi.org/10.1007/s10886-005-7623-9

Sarah E, Radloff R, Colleen H, et al. (2010). Population structure and classification of Apis cerana. Apidologie, 41: 589-601. DOI: https://doi.org/10.1051/apido/2010008

Seeley TD. (1982). Adaptive significance of the age polyethism schedule in honeybee colonies. Behav. Ecol. Sociobiol., 11: 287-293. DOI: https://doi.org/10.1007/BF00299306

Seeley TD. (1979). Queen substance dispersal by messenger workers in honeybee colonies. Behav. Ecol. Sociobiol., 5: 391-415. DOI: https://doi.org/10.1007/BF00292527

Seeley TD. (1995). The wisdom of the hive. Harvard University Press, Cambridge. DOI: https://doi.org/10.4159/9780674043404

Seeley TD. & Visscher PK. (2004). Quorum sensing during nest-site selection by honeybee swarms. Behav. Ecol. Sociobiol., 56: 594-601. DOI: https://doi.org/10.1007/s00265-004-0814-5

Vanesa M, Fernández, Andrés Arenas, Walter M. & Farina. (2009). Volatile exposure within the honeybee hive and its effect on olfactory discrimination. Compar. Physiol. A, 195: 759-768. DOI: https://doi.org/10.1007/s00359-009-0453-4

Visscher PK. (2007). Group decision making in nest-site selection among social insects. Annu. Rev. Entomol., 52: 255-275. DOI: https://doi.org/10.1146/annurev.ento.51.110104.151025

Winston ML. (1987). The biology of the honey bee. Harvard University Press, Cambridge.

Downloads

Published

2013-12-30

How to Cite

Zhao, H., Luo, Y., Lee, J., Zhang, X., Liang, qin, & Zeng, X. (2013). The Odorant-Binding Protein Gene obp11 Shows Different Spatiotemporal Roles in the Olfactory System of Apis mellifera ligustica and Apis cerana cerana. Sociobiology, 60(4), 429–435. https://doi.org/10.13102/sociobiology.v60i4.429-435

Issue

Section

Research Article - Bees

Most read articles by the same author(s)