Chemical Characterisation of the Floral Oil of the Murici (Byrsonima sericea): Discovering the Constituents Used in Reproduction by Oil-Collecting Bees

Authors

  • Felipe Lima Rosa Universidade Federal do Ceará
  • Artur Bruno da Silva Barbosa Universidade Federal do Ceará
  • Tigressa Helena Soares Rodrigues Universidade Estadual Vale do Acaraú (UVA)
  • Guilherme Julião Zocolo Empresa Brasileira de Pesquisa Agropecuária - Embrapa, Agroindustria Tropical
  • Breno Magalhães Freitas Universidade Federal do Ceará

DOI:

https://doi.org/10.13102/sociobiology.v67i1.4432

Keywords:

solitary bees, floral lipids, mass spectrometry, Byrsonima sericea

Abstract

The recent decline in population of generalist bees such as those of the genera Apis and Bombus has shown the need to breed and manage a larger number of bee species. Among the species with potential use for agricultural pollination in the Neotropics, a peculiar small group has specialised in collecting floral oil. Therefore, the aim of this study was to analyse the chemical profile and to identify the main constituents of the floral oil of the nance (Byrsonima sericea), an abundant species in the Northeast of Brazil and widely used by oil-collecting bees. A sample of 400 flowers of the nance were collected between October 2017 and January 2018. The samples were derivatised (MSTFA) and analysed by gas chromatography-mass spectrometry in a Model 7890B GC Gas Chromatograph System coupled to a Model 5977A MSD mass spectrometer. The compounds were separated using an HP-5ms capillary column and identified by comparing the mass spectra with the National Institute of Standards and Technology (NIST) database, and by comparison of the retention indices (RI). From the chromatographic analysis, it was possible to identify 23 constituents, especially fatty acids and carboxylic acids. The results indicate the presence of tricosanoic acid, palmitic acid and heneicosanoic acid as the main constituents of the oil under study. There is still a need for studies that would better explain the relationship of these constituents with the bees that use the oil.

Downloads

Download data is not yet available.

References

Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry(Vol. 456). Carol Stream, IL: Allured publishing corporation.

Alves-Dos-Santos, I., Gaglianone, M. C. & Machado, I. C. (2007). História natural das abelhas coletoras de óleo. Oecologia Brasiliensis. 11 (4): 544-557. doi: 10.4257/oeco.2007.1104.06

Alves-Dos-Santos, I, Melo, G.A.R. & Rozen JR, J.G. (2002). Biology and immature stages of the bee tribe Tetrapediini (Hymenoptera: Apidae). American Museum Novitates, n. 3377, p. 1-45. doi: https://doi.org/10.1206/0003-0082(2002)377<0001:BAISOT>2.0.CO;2

Barônio, G. J., Haleem, M. A., Marsaioli, A. J. & Torezan-Silingardi, H. M. (2017). Characterization of Malpighiaceae flower-visitor interactions in a Brazilian savannah: How do floral resources and visitor abundance change over time. Flora, 234, 126-134. doi: 10.1016/j.flora.2017.07.015

Buchmann, S. L. (1987). The ecology of oil flowers and their bees. Annual Review of Ecology and Systematics, 18(1), 343-369.

Cantrill, R. C., Hepburn, H. R. & Warner, S. J. (1981). Changes in lipid composition during sealed brood development of African worker honeybees. Comparative Biochemistry and Physiology B.

Cappellari, S. C., Haleem, M. A., Marsaioli, A. J., Tidon, R. & Simpson, B. B. (2011). Pterandra pyroidea: a case of pollination shift within Neotropical Malpighiaceae. Annals of botany, 107(8), 1323-1334. doi: 10.1093/aob/mcr084

Cavalcante, M. C., Oliveira, F. F., Maués, M. M. & Freitas, B. M. (2012). Pollination requirements and the foraging behavior of potential pollinators of cultivated Brazil nut (Bertholletia excelsa Bonpl.) trees in central Amazon rainforest. Psyche: A Journal of Entomology, 2012. doi: 10.1155/2012/978019

Dainese, M., Riedinger, V., Holzschuh, A., Kleijn, D., Scheper, J. & Steffan‐Dewenter, I. (2018). Managing trap‐nesting bees as crop pollinators: Spatiotemporal effects of floral resources and antagonists. Journal of Applied Ecology, 55(1), 195-204. doi: 10.1111/1365-2664.12930

Desbois, A. P., & Smith, V. J. (2010). Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Applied microbiology and biotechnology, 85(6), 1629-1642. doi: 10.1007/s00253-009-2355-3

Dötterl, S. & Schäffler, I. (2007). Flower scent of floral oil-producing Lysimachia punctata as attractant for the oil-bee Macropis fulvipes. Journal of chemical ecology, 33(2), 441-445. doi: 10.1007/s10886-006-9237-2

Dötterl, S. & Vereecken, N. J. (2010). The chemical ecology and evolution of bee–flower interactions: a review and perspectives. Canadian Journal of Zoology, 88(7), 668-697. doi: https://doi.org/10.1139/Z10-031

Dumri, K., Seipold, L., Schmidt, J., Gerlach, G., Dötterl, S., Ellis, A. G. & Wessjohann, L. A. (2008). Non-volatile floral oils of Diascia spp.(Scrophulariaceae). Phytochemistry, 69(6), 1372-1383. doi: 10.1016/j.phytochem.2007.12.012

Farré-Armengol, G., Filella, I., Llusia, J. & Peñuelas, J. (2015). Relationships among floral VOC emissions, floral rewards and visits of pollinators in five plant species of a Mediterranean shrubland. Plant Ecology and Evolution, 148(1), 90-99. doi: https://doi.org/10.5091/plecevo.2015.963

Fernandes, N.S., Silva, F.A.N., Aragão, F.A.S., Zocolo, G.J. & Freitas, B.M. (2019). Volatile organic compounds role in selective pollinator visits to commercial melon types. Journal of Agricultural Science, 11(3), 93-108. doi: 10.5539/jas.v11n3p93

Freitas, B. M. & Pereira, J.O.P. (2004) Crop consortium to improve pollination: can West Indian cherry (Malpighia emarginata) attract Centris bees to pollinate cashew (Anacardium occidentale)? In: Freitas, B. M. & Pereira, J.O.P. (eds.). Solitary Bees: conservation, rearing and management for pollination. Fortaleza: Imprensa Universitária. pp. 193-201.

Freitas, B. M., Alves, J. E., Brandão, G. F. & Araújo, Z. B. (1999). Pollination requirements of West Indian cherry (Malpighia emarginata) and its putative pollinators, Centris bees, in NE Brazil. The Journal of Agricultural Science, 133(3), 303-311.

Freitas, B. M. & Paxton, R. J. (1998). A comparison of two pollinators: the introduced honey bee Apis mellifera and an indigenous bee Centris tarsata on cashew Anacardium occidentale in its native range of NE Brazil. Journal of Applied Ecology, 35(1), 109-121.

Gaglianone, M. C., Rocha, H. H. S., Benevides, C. R., Junqueira, C. N. & Augusto, S. C. (2010). Importância de Centridini (Apidae) na polinização de plantas de interesse agrícola: o maracujá-doce (Passiflora alata Curtis) como estudo de caso na região sudeste do Brasil. Oecologia Australis, 14(1), 152-164. doi: 10.4257/oeco.2010.1401.08

IPBES. Summary for policymakers of the assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. 2016.

Klein, A. M., Vaissiere, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C. & Tscharntke, T. (2006). Importance of pollinators in changing landscapes for world crops. Proceedings of the royal society B: biological sciences, 274(1608), 303-313. doi:10.1098/rspb.2006.3721

Koeppen, W. (1948). Climatologia: con un estudio de los climas de la tierra. México. v. 104, p. 479.

Krug, C., Cordeiro, G., Schäffler, I., Silva, C. I., Oliveira, R., Schlindwein, C. & Alves-dos-Santos, I. (2018). Nocturnal bee pollinators are attracted to guarana flowers by their scents. Frontiers in plant science, 9, 1072. doi: 10.3389/fpls.2018.01072

Leonard, A. S. & Masek, P. (2014). Multisensory integration of colors and scents: insights from bees and flowers. Journal of Comparative Physiology A, 200(6), 463-474. doi: 10.1007/s00359-014-0904-4

Lima, R., Ferreira-Caliman, M., da Costa Dórea, M., Garcia, C. T., dos Santos, F. D. A. R., Oliveira, F. F. & Garófalo, C. A. (2017). Floral Resource Partitioning between Centris (Heterocentris) analis (Fabricius, 1804) and Centris (Heterocentris) terminata Smith, 1874 (Hymenoptera, Apidae, Centridini), in an Urban Fragment of the Atlantic Forest. Sociobiology, 64(3), 292-300. doi: 10.13102/sociobiology.v64i3.1611

Lombello, R. A., & Forni-Martins, E. R. (2003). Malpighiaceae: correlations between habit, fruit type and basic chromosome number. Acta Botanica Brasilica, 17(2), 171-178. doi: http://dx.doi.org/10.1590/S0102-33062003000200001

Lourenço, D.V. Hábitos de nidificação e reprodutivos da abelha coletora de óleo Centris analis (Hymenoptera - Apidae) em ninhos-armadilha sob condições tropicais. 2018. 47 f. Dissertação (Mestrado em Zootecnia) – Universidade Federal do Ceará, Fortaleza, 2018.

Magalhães, C. B. & Freitas, B. M. (2013). Introducing nests of the oil-collecting bee Centris analis (Hymenoptera: Apidae: Centridini) for pollination of acerola (Malpighia emarginata) increases yield. Apidologie, 44(2), 234-239. doi: 10.1007/s13592-012-0175-4

Manning, R. (2001). Fatty acids in pollen: a review of their importance for honey bees. Bee World, 82(2), 60-75. doi: 10.1080/0005772X.2001.11099504

Melo, G. A., & Gaglianone, M. C. (2005). Females of Tapinotaspoides, a genus in the oil-collecting bee tribe Tapinotaspidini, collect secretions from non-floral trichomes (Hymenoptera, Apidae). Revista Brasileira de Entomologia, 49(1), 167-168. doi: http://dx.doi.org/10.1590/S0085-56262005000100022

Michener, C.D. (2000). The bees of the world. Johns Hopkins Univ. Press, Baltimore & London. 913pp.

Moldoveanu, S. & David, V. (2018). Derivatization Methods in GC and GC/MS. In Gas Chromatography. IntechOpen. doi: http://dx.doi.org/10.5772/intechopen.819542.

Moro, M. F., Macedo, M. B., de Moura-Fé, M. M., Castro, A. S. F. & da Costa, R. C. (2015). Vegetação, unidades fitoecológicas e diversidade paisagística do estado do Ceará. Rodriguésia-Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, 66(3), 717-743. doi: 10.1590/2175-7860201566305

Pereira, J. O. P. & Freitas, B. M. (2002). Estudo da biologia floral e requerimentos de polinização do muricizeiro (Byrsonima crassifolia L.). Revista Ciência Agronômica, 33(2), 5-12.

Potts, S. G., Imperatriz-Fonseca, V., Ngo, H. T., Aizen, M. A., Biesmeijer, J. C., Breeze, T. D., ... & Vanbergen, A. J. (2016). Safeguarding pollinators and their values to human well-being. Nature, 540(7632), 220. doi:10.1038/nature20588

Radmacher, S. & Strohm, E. (2010). Factors affecting offspring body size in the solitary bee Osmia bicornis (Hymenoptera, Megachilidae). Apidologie, 41(2), 169-177. doi: 10.1051/apido/2009064

Raguso, R. A. (2016). More lessons from linalool: insights gained from a ubiquitous floral volatile. Current opinion in plant biology, 32, 31-36. doi: 10.1016/j.pbi.2016.05.007

Reis, M. G., de Faria, A. D., Dos Santos, I. A., Maria do Carmo, E. A. & Marsaioli, A. J. (2007). Byrsonic acid—the clue to floral mimicry involving oil-producing flowers and oil-collecting bees. Journal of chemical ecology, 33(7), 1421-1429. doi: 10.1007/s10886-007-9309-y

Reis, M. G., Singer, R. B., Goncalves, R., & Marsaioli, A. J. (2006). The chemical composition of Phymatidium delicatulum and P-tillandsioides (Orchidaceae) floral oils. Natural Product Communications.

Ricketts, T. H., Regetz, J., Steffan‐Dewenter, I., Cunningham, S. A., Kremen, C., Bogdanski, A., ... & Morandin, L. A. (2008). Landscape effects on crop pollination services: are there general patterns?. Ecology letters, 11(5), 499-515. doi: 10.1111/j.1461-0248.2008.01157.x

Rosa, J. F., Ramalho, M., Monteiro, D. & Dantas, M. (2007). Sucesso reprodutivo de Byrsonima sericea DC.(Malpighiaceae) e diversidade de abelhas Centridini (Apidae). Revista Brasileira de Biociências, 5(S1), 168-170.

Sazan, M. S., Bezerra, A. D. M. & Freitas, B. M. (2014). Oil collecting bees and Byrsonima cydoniifolia A. Juss.(Malpighiaceae) interactions: the prevalence of long-distance cross pollination driving reproductive success. Anais da Academia Brasileira de Ciências, 86(1), 347-358. doi: 10.1590/0001-3765201420130049

Scheper, J., Bommarco, R., Holzschuh, A., Potts, S. G., Riedinger, V., Roberts, S. P., ... & Wickens, V. J. (2015). Local and landscape‐level floral resources explain effects of wildflower strips on wild bees across four European countries. Journal of Applied Ecology, 52(5), 1165-1175. doi: 10.1111/1365-2664.12479

Song, G. C. & Ryu, C. M. (2013). Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. International journal of molecular sciences, 14(5), 9803-9819. doi:10.3390/ijms14059803

T'ai, H. R. & Cane, J. H. (2002). The effect of pollen protein concentration on body size in the sweat bee Lasioglossum zephyrum (Hymenoptera: Apiformes). Evolutionary Ecology, 16(1), 49-65.

Vinson, S. B., Frankie, G. W., & Williams, H. J. (2006). Nest liquid resources of several cavity nesting bees in the genus Centris and the identification of a preservative, levulinic acid. Journal of chemical ecology, 32(9), 2013-2021. doi: 10.1007/s10886-006-9125-9

Vogel, S. T. E. F. A. N. (1990). History of the Malpighiaceae in the light of pollination ecology. Memoirs of the New York Botanical Garden, 55, 130-142.

War, A. R., Paulraj, M. G., Ahmad, T., Buhroo, A. A., Hussain, B., Ignacimuthu, S. & Sharma, H. C. (2012). Mechanisms of plant defense against insect herbivores. Plant signaling & behavior, 7(10), 1306-1320. doi: 10.4161/bpsb.21663

Wnson, S. B., Williams, H. J., Frankie, G. W., & Shrum, G. (1997). Floral lipid chemistry of Byrsonima crassifolia (Malpigheaceae) and a use of floral lipids by Centris bees (Hymenoptera: Apidae). Biotropica, 29(1), 76-83.

Downloads

Published

2020-04-18

How to Cite

Rosa, F. L., Barbosa, A. B. da S., Rodrigues, T. H. S., Zocolo, G. J., & Freitas, B. M. (2020). Chemical Characterisation of the Floral Oil of the Murici (Byrsonima sericea): Discovering the Constituents Used in Reproduction by Oil-Collecting Bees. Sociobiology, 67(1), 80–88. https://doi.org/10.13102/sociobiology.v67i1.4432

Issue

Section

Research Article - Bees

Most read articles by the same author(s)