Field Distance Effects of Fipronil and Chlorfenapyr as Soil Termiticides Against the Desert Subterranean Termite, Heterotermes aureus (Blattodea: Rhinotermitidae)

Authors

  • Paul B Baker University of Arizona
  • Javier G Miguelena University of Arizona

DOI:

https://doi.org/10.13102/sociobiology.v67i1.4459

Keywords:

Termidor, Phantom, termite management, insecticide

Abstract

A desirable trait of termiticides is that they suppress termite activity at a distance from the site of application. Fipronil and chlorfenapyr are two non-repellent termiticides that display delayed toxicity and are therefore good candidates for yielding distance effects. We assessed their effects as soil-applied termiticides for the management of the desert subterranean termite, Heterotermes aureus (Snyder), under field conditions in southern Arizona. Our approach involved recording termite activity within field experimental grids consisting of termite monitoring stations at selected distances from a termiticide application perimeter. Fipronil-treated plots experienced large and significant reductions in termite presence and abundance relative to controls in stations immediately adjacent to treated soil. However, there was no evidence of reductions in termite activity in stations further away from the soil treatment. In contrast, termite abundance and presence in stations decreased relatively to controls after chlorfenapyr application in whole experimental grids and in several grid sections spatially separated from treated soil. These reductions were especially evident in the five central stations surrounded by the treatment perimeter and in the furthest set of stations. The spatial pattern of changes in chlorfenapyr plots was consistent with termiticide transfer as a mechanism behind distance effects. The impact of fipronil and chlorfenapyr on termite populations in our study suggests that they can both be useful for the management of H. aureus, although each might be suited for different
management goals. Our results also suggest that perimeter treatments alone are not sufficient to accomplish full control of large H. aureus infestations.

Downloads

Download data is not yet available.

Author Biographies

Paul B Baker, University of Arizona

Emeritus Professor

Department of Entomology

Javier G Miguelena, University of Arizona

PhD program Graduate 

Department of Entomology

References

Bagnères, A. G., Pichon, A., Hope, J., Davis, R. W., & Clément, J. L. (2009). Contact versus feeding intoxication by fipronil in Reticulitermes termites (Isoptera: Rhinotermitidae): laboratory evaluation of toxicity, uptake, clearance, and transfer among individuals. Journal of Economic Entomology, 102: 347-356. doi: 10.1603/029.102.0145

Baker, P. B., Hagler, J. R., Marchosky, R., Machtley, S. A., Brown, J. M., Riehle, M. A., & Bellamy, D. E. (2010). Utilizing rabbit immunoglobulin G protein for mark-capture studies on the desert subterranean termite, Heterotermes aureus (Snyder). Insectes Sociaux, 57: 147-155. doi: 10.1007/s00040-009-0060-y

Baker, P. B., & Haverty, M. I. (2007). Foraging populations and distances of the desert subterranean termite, Heterotermes aureus (Isoptera: Rhinotermitidae), associated with structures in southern Arizona. Journal of Economic Entomology, 100: 1381-1390. doi: 10.1093/jee/100.4.1381

Brown, D. E. (1994). Biotic Communities: Southwestern United States and Northwestern Mexico (2nd ed.). Salt Lake City: University of Utah Press, 346 p.

Cancello, E. M., & Myles, T. G. (2000). Isoptera. In J. E. Llorente-Bousquets, E. González-Soriano & N. Papavero (Eds.), Biodivesidad, Taxonomía y Biogeografía de artrópodos de México: hacia una síntesis de su conocimiento (Vol. II, pp. 295-315). Mexico: UNAM.

Chen, Z., Qu, Y., Xiao, D., Song, L., Zhang, S., Gao, X., Desneux, N., & Song, D. (2015). Lethal and social-mediated effects of ten insecticides on the subterranean termite Reticulitermes speratus. Journal of Pest Science, 88: 741-751. doi: 10.1007/s10340-015-0656-0

Chouvenc, T. (2018). Comparative impact of chitin synthesis inhibitor baits and non-repellent liquid termiticides on subterranean termite colonies over foraging distances: colony elimination versus localized termite exclusion. Journal of Economic Entomology, 111: 2317-2328. doi: 10.1093/jee/toy210

English, N., Weltzin, J., Fravolini, A., Thomas, L., & Williams, D. (2005). The influence of soil texture and vegetation on soil moisture under rainout shelters in a semi-desert grassland. Journal of Arid Environments, 63: 324-343. doi: 10.1016/j.jaridenv.2005.03.013

Forschler, B. (2011). Sustainable termite management using an integrated pest management approach. In P. Dhang (Ed.), Urban Pest Management: An Environmental Perpective (pp. 133-144). Wallingford, UK: CAB International.

Forschler, B. T. (2009). Screening insecticides for use as soil termiticides requires a series of bioassays: lessons from trials using Reticulitermes flavipes (Isoptera: Rhinotermitidae). In C. J. Peterson & D. M. Stout (Eds.), Pesticides in Household, Structural and Residential Pest Management (pp. 53-74). Washington, DC: American Chemical Society.

Hainzl, D., & Casida, J. E. (1996). Fipronil insecticide: novel photochemical desulfinylation with retention of neurotoxicity. Proceedings of the National Academy of Sciences, 93: 12764-12767.

Haverty, M. I., & Nutting, W. L. (1975). Density, dispersion, and composition of desert termite foraging populations and their relationship to superficial dead wood. Environmental Entomology, 4: 480-486.

Hu, X. P. (2005). Evaluation of efficacy and nonrepellency of indoxacarb and fipronil-treated soil at various concentrations and thicknesses against two subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 98: 509-517. doi: 10.1093/jee/98.2.509

Hu, X. P. (2011). Liquid termiticides: their role in subterranean termite management. In P. Dhang (Ed.), Urban pest management: an environmental perspective (pp. 114-132). Wallingford, UK: CAB International.

Jones, S. C. (1990). Delineation of Heterotermes aureus (Isoptera: Rhinotermitidae) foraging territories in a Sonoran desert grassland. Environmental Entomology, 19: 1047-1054.

Jones, S. C., & Trosset, M. W. (1991). Interference competition in desert subterranean termites. Entomologia Experimentalis et Applicata, 61: 83-90.

Jones, S. C., Trosset, M. W., & Nutting, W. L. (1987). Biotic and abiotic influences on foraging of Heterotermes aureus (Snyder)(Isoptera: Rhinotermitidae). Environmental Entomology, 16: 791-795.

Miguelena, J. G., & Baker, P. B. (2012). Foraging populations of tube building termites, Gnathamitermes perplexus (Banks), associated with termiticide experiments in southern arizona (Isoptera: Termitidae). Sociobiology, 59: 641.

Misbah-Ul-Haq, M., Khan, I. A., Farid, A., Ullah, M., Gouge, D. H., & Baker, P. B. (2016). Efficacy of indoxacarb and chlorfenapyr against Subterranean termite Heterotermes indicola (Wasmann)(Isoptera: Rhinotermitidae) in the laboratory. Turkish Journal of Entomology, 40. doi: 10.16970/ted.89871

Neoh, K. B., Yeoh, B. H., & Lee, C. Y. (2014). Mortality patterns in Coptotermes gestroi (Blattodea: Rhinotermitidae) following horizontal transfer of nonrepellent and repellent insecticides: effects of donor: recipient ratio and exposure time. Journal of Economic Entomology, 107: 1563-1572. doi: 10.1603/EC14080

Paul, B., Singh, S., Shankarganesh, K., & Khan, M. A. (2018). Synthetic Insecticides: The Backbone of Termite Management. In M. A. Khan & W. Ahmad (Eds.), Termites and Sustainable Management (pp. 233-260). Cham, Switzerland: Springer.

Peterson, C. J. (2010). Effect of vegetation on the longevity, mobility and activity of fipronil applied at the termiticidal rate in laboratory soil columns. Pest Management Science, 66: 944-948. doi: 10.1002/ps.1964

Potter, M. F., & Hillery, A. E. (2002). Exterior-targeted liquid termiticides: an alternative approach to managing subterranean termites (Isoptera: Rhinotermitidae) in buildings. Sociobiology, 39: 373-405.

Quarcoo, F. Y., Hu, X. P., & Appel, A. G. (2012). Effects of non‐repellent termiticides on the tunneling and walking ability of the eastern subterranean termite (Isoptera: Rhinotermitidae). Pest Management Science, 68: 1352-1359. doi: 10.1002/ps.3302

Ripa, R., Luppichini, P., Su, N.-Y., & Rust, M. K. (2007). Field evaluation of potential control strategies against the invasive eastern subterranean termite (Isoptera: Rhinotermitidae) in Chile. Journal of Economic Entomology, 100: 1391-1399. doi: 10.1093/jee/100.4.1391

Rust, M. K., & Saran, R. K. (2006). Toxicity, repellency, and transfer of chlorfenapyr against western subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 99: 864-872. doi: 10.1093/jee/99.3.864

Rust, M. K., & Su, N.-Y. (2012). Managing social insects of urban importance. Annual Review of Entomology, 57: 355-375. doi: 10.1146/annurev-ento-120710-100634

Saran, R. K., & Rust, M. K. (2007). Toxicity, uptake, and transfer efficiency of fipronil in western subterranean termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 100: 495-508. doi: 10.1093/jee/100.2.495

SAS Institute. (2016). JMP version 13.1.0. Cary, NC: SAS Institute.

Sayre, N. F. (2003). Recognizing history in range ecology: 100 years of science and management on the Santa Rita Experimental Range. In M. P. McClaran, P. F. Folliott & C. B. Edminster (Eds.), Santa Rita Experimental Range: 100 years (1903 to 2003) of accomplishments and contributions (pp. 1-15). Ogden, UT: US Department of Agriculture, Forest Service.

Shelton, T., Fye, D., & Ulyshen, M. (2014). US Department of Agriculture-Forest Service Termiticide Report for 2013. Pest Management Professional, 82: 42-52.

Shelton, T. G. (2013). The Influence of Fipronil on Reticulitermes flavipes (Isoptera: Rhinotermitidae) Feeding Beyond Treated Plots. Journal of Economic Entomology, 106: 2160-2166. doi: 10.1603/EC12443

Shelton, T. G., Mulrooney, J. E., & Wagner, T. L. (2006). Transfer of chlorfenapyr among workers of Reticulitermes flavipes (Isoptera: Rhinotermitidae) in the laboratory. Journal of Economic Entomology, 99: 886-892. doi: 10.1093/jee/99.3.886

Spomer, N. A., Kamble, S. T., Warriner, R. A., & Davis, R. W. (2008). Influence of temperature on rate of uptake and subsequent horizontal transfer of [14C] fipronil by eastern subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 101: 902-908. doi: 10.1093/jee/101.3.902

Su, N.-Y. (2005). Response of the Formosan subterranean termites (Isoptera: Rhinotermitidae) to baits or nonrepellent termiticides in extended foraging arenas. Journal of Economic Entomology, 98: 2143-2152. doi: 10.1093/jee/98.6.2143

Su, N.-Y., & Scheffrahn, R. H. (1990). Economically important termites in the United States and their control. Sociobiology, 17: 77-94.

Treacy, M., Miller, T., Black, B., Gard, I., Hunt, D., & Hollingworth, R. M. (1994). Uncoupling activity and pesticidal properties of pyrroles. Biochemical Society Transactions, 22: 244-247. doi: 10.1042/bst0220244

Vargo, E. L., & Parman, V. (2012). Effect of fipronil on subterranean termite colonies (Isoptera: Rhinotermitidae) in the field. Journal of Economic Entomology, 105: 523-532. doi: 10.1603/EC11155

Downloads

Published

2020-04-18

How to Cite

Baker, P. B., & Miguelena, J. G. (2020). Field Distance Effects of Fipronil and Chlorfenapyr as Soil Termiticides Against the Desert Subterranean Termite, Heterotermes aureus (Blattodea: Rhinotermitidae). Sociobiology, 67(1), 94–105. https://doi.org/10.13102/sociobiology.v67i1.4459

Issue

Section

Research Article - Termites