Field Distance Effects of Fipronil and Chlorfenapyr as Soil Termiticides Against the Desert Subterranean Termite, Heterotermes aureus (Blattodea: Rhinotermitidae)
DOI:
https://doi.org/10.13102/sociobiology.v67i1.4459Keywords:
Termidor, Phantom, termite management, insecticideAbstract
A desirable trait of termiticides is that they suppress termite activity at a distance from the site of application. Fipronil and chlorfenapyr are two non-repellent termiticides that display delayed toxicity and are therefore good candidates for yielding distance effects. We assessed their effects as soil-applied termiticides for the management of the desert subterranean termite, Heterotermes aureus (Snyder), under field conditions in southern Arizona. Our approach involved recording termite activity within field experimental grids consisting of termite monitoring stations at selected distances from a termiticide application perimeter. Fipronil-treated plots experienced large and significant reductions in termite presence and abundance relative to controls in stations immediately adjacent to treated soil. However, there was no evidence of reductions in termite activity in stations further away from the soil treatment. In contrast, termite abundance and presence in stations decreased relatively to controls after chlorfenapyr application in whole experimental grids and in several grid sections spatially separated from treated soil. These reductions were especially evident in the five central stations surrounded by the treatment perimeter and in the furthest set of stations. The spatial pattern of changes in chlorfenapyr plots was consistent with termiticide transfer as a mechanism behind distance effects. The impact of fipronil and chlorfenapyr on termite populations in our study suggests that they can both be useful for the management of H. aureus, although each might be suited for different
management goals. Our results also suggest that perimeter treatments alone are not sufficient to accomplish full control of large H. aureus infestations.
Downloads
References
Bagnères, A. G., Pichon, A., Hope, J., Davis, R. W., & Clément, J. L. (2009). Contact versus feeding intoxication by fipronil in Reticulitermes termites (Isoptera: Rhinotermitidae): laboratory evaluation of toxicity, uptake, clearance, and transfer among individuals. Journal of Economic Entomology, 102: 347-356. doi: 10.1603/029.102.0145
Baker, P. B., Hagler, J. R., Marchosky, R., Machtley, S. A., Brown, J. M., Riehle, M. A., & Bellamy, D. E. (2010). Utilizing rabbit immunoglobulin G protein for mark-capture studies on the desert subterranean termite, Heterotermes aureus (Snyder). Insectes Sociaux, 57: 147-155. doi: 10.1007/s00040-009-0060-y
Baker, P. B., & Haverty, M. I. (2007). Foraging populations and distances of the desert subterranean termite, Heterotermes aureus (Isoptera: Rhinotermitidae), associated with structures in southern Arizona. Journal of Economic Entomology, 100: 1381-1390. doi: 10.1093/jee/100.4.1381
Brown, D. E. (1994). Biotic Communities: Southwestern United States and Northwestern Mexico (2nd ed.). Salt Lake City: University of Utah Press, 346 p.
Cancello, E. M., & Myles, T. G. (2000). Isoptera. In J. E. Llorente-Bousquets, E. González-Soriano & N. Papavero (Eds.), Biodivesidad, Taxonomía y Biogeografía de artrópodos de México: hacia una síntesis de su conocimiento (Vol. II, pp. 295-315). Mexico: UNAM.
Chen, Z., Qu, Y., Xiao, D., Song, L., Zhang, S., Gao, X., Desneux, N., & Song, D. (2015). Lethal and social-mediated effects of ten insecticides on the subterranean termite Reticulitermes speratus. Journal of Pest Science, 88: 741-751. doi: 10.1007/s10340-015-0656-0
Chouvenc, T. (2018). Comparative impact of chitin synthesis inhibitor baits and non-repellent liquid termiticides on subterranean termite colonies over foraging distances: colony elimination versus localized termite exclusion. Journal of Economic Entomology, 111: 2317-2328. doi: 10.1093/jee/toy210
English, N., Weltzin, J., Fravolini, A., Thomas, L., & Williams, D. (2005). The influence of soil texture and vegetation on soil moisture under rainout shelters in a semi-desert grassland. Journal of Arid Environments, 63: 324-343. doi: 10.1016/j.jaridenv.2005.03.013
Forschler, B. (2011). Sustainable termite management using an integrated pest management approach. In P. Dhang (Ed.), Urban Pest Management: An Environmental Perpective (pp. 133-144). Wallingford, UK: CAB International.
Forschler, B. T. (2009). Screening insecticides for use as soil termiticides requires a series of bioassays: lessons from trials using Reticulitermes flavipes (Isoptera: Rhinotermitidae). In C. J. Peterson & D. M. Stout (Eds.), Pesticides in Household, Structural and Residential Pest Management (pp. 53-74). Washington, DC: American Chemical Society.
Hainzl, D., & Casida, J. E. (1996). Fipronil insecticide: novel photochemical desulfinylation with retention of neurotoxicity. Proceedings of the National Academy of Sciences, 93: 12764-12767.
Haverty, M. I., & Nutting, W. L. (1975). Density, dispersion, and composition of desert termite foraging populations and their relationship to superficial dead wood. Environmental Entomology, 4: 480-486.
Hu, X. P. (2005). Evaluation of efficacy and nonrepellency of indoxacarb and fipronil-treated soil at various concentrations and thicknesses against two subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 98: 509-517. doi: 10.1093/jee/98.2.509
Hu, X. P. (2011). Liquid termiticides: their role in subterranean termite management. In P. Dhang (Ed.), Urban pest management: an environmental perspective (pp. 114-132). Wallingford, UK: CAB International.
Jones, S. C. (1990). Delineation of Heterotermes aureus (Isoptera: Rhinotermitidae) foraging territories in a Sonoran desert grassland. Environmental Entomology, 19: 1047-1054.
Jones, S. C., & Trosset, M. W. (1991). Interference competition in desert subterranean termites. Entomologia Experimentalis et Applicata, 61: 83-90.
Jones, S. C., Trosset, M. W., & Nutting, W. L. (1987). Biotic and abiotic influences on foraging of Heterotermes aureus (Snyder)(Isoptera: Rhinotermitidae). Environmental Entomology, 16: 791-795.
Miguelena, J. G., & Baker, P. B. (2012). Foraging populations of tube building termites, Gnathamitermes perplexus (Banks), associated with termiticide experiments in southern arizona (Isoptera: Termitidae). Sociobiology, 59: 641.
Misbah-Ul-Haq, M., Khan, I. A., Farid, A., Ullah, M., Gouge, D. H., & Baker, P. B. (2016). Efficacy of indoxacarb and chlorfenapyr against Subterranean termite Heterotermes indicola (Wasmann)(Isoptera: Rhinotermitidae) in the laboratory. Turkish Journal of Entomology, 40. doi: 10.16970/ted.89871
Neoh, K. B., Yeoh, B. H., & Lee, C. Y. (2014). Mortality patterns in Coptotermes gestroi (Blattodea: Rhinotermitidae) following horizontal transfer of nonrepellent and repellent insecticides: effects of donor: recipient ratio and exposure time. Journal of Economic Entomology, 107: 1563-1572. doi: 10.1603/EC14080
Paul, B., Singh, S., Shankarganesh, K., & Khan, M. A. (2018). Synthetic Insecticides: The Backbone of Termite Management. In M. A. Khan & W. Ahmad (Eds.), Termites and Sustainable Management (pp. 233-260). Cham, Switzerland: Springer.
Peterson, C. J. (2010). Effect of vegetation on the longevity, mobility and activity of fipronil applied at the termiticidal rate in laboratory soil columns. Pest Management Science, 66: 944-948. doi: 10.1002/ps.1964
Potter, M. F., & Hillery, A. E. (2002). Exterior-targeted liquid termiticides: an alternative approach to managing subterranean termites (Isoptera: Rhinotermitidae) in buildings. Sociobiology, 39: 373-405.
Quarcoo, F. Y., Hu, X. P., & Appel, A. G. (2012). Effects of non‐repellent termiticides on the tunneling and walking ability of the eastern subterranean termite (Isoptera: Rhinotermitidae). Pest Management Science, 68: 1352-1359. doi: 10.1002/ps.3302
Ripa, R., Luppichini, P., Su, N.-Y., & Rust, M. K. (2007). Field evaluation of potential control strategies against the invasive eastern subterranean termite (Isoptera: Rhinotermitidae) in Chile. Journal of Economic Entomology, 100: 1391-1399. doi: 10.1093/jee/100.4.1391
Rust, M. K., & Saran, R. K. (2006). Toxicity, repellency, and transfer of chlorfenapyr against western subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 99: 864-872. doi: 10.1093/jee/99.3.864
Rust, M. K., & Su, N.-Y. (2012). Managing social insects of urban importance. Annual Review of Entomology, 57: 355-375. doi: 10.1146/annurev-ento-120710-100634
Saran, R. K., & Rust, M. K. (2007). Toxicity, uptake, and transfer efficiency of fipronil in western subterranean termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 100: 495-508. doi: 10.1093/jee/100.2.495
SAS Institute. (2016). JMP version 13.1.0. Cary, NC: SAS Institute.
Sayre, N. F. (2003). Recognizing history in range ecology: 100 years of science and management on the Santa Rita Experimental Range. In M. P. McClaran, P. F. Folliott & C. B. Edminster (Eds.), Santa Rita Experimental Range: 100 years (1903 to 2003) of accomplishments and contributions (pp. 1-15). Ogden, UT: US Department of Agriculture, Forest Service.
Shelton, T., Fye, D., & Ulyshen, M. (2014). US Department of Agriculture-Forest Service Termiticide Report for 2013. Pest Management Professional, 82: 42-52.
Shelton, T. G. (2013). The Influence of Fipronil on Reticulitermes flavipes (Isoptera: Rhinotermitidae) Feeding Beyond Treated Plots. Journal of Economic Entomology, 106: 2160-2166. doi: 10.1603/EC12443
Shelton, T. G., Mulrooney, J. E., & Wagner, T. L. (2006). Transfer of chlorfenapyr among workers of Reticulitermes flavipes (Isoptera: Rhinotermitidae) in the laboratory. Journal of Economic Entomology, 99: 886-892. doi: 10.1093/jee/99.3.886
Spomer, N. A., Kamble, S. T., Warriner, R. A., & Davis, R. W. (2008). Influence of temperature on rate of uptake and subsequent horizontal transfer of [14C] fipronil by eastern subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 101: 902-908. doi: 10.1093/jee/101.3.902
Su, N.-Y. (2005). Response of the Formosan subterranean termites (Isoptera: Rhinotermitidae) to baits or nonrepellent termiticides in extended foraging arenas. Journal of Economic Entomology, 98: 2143-2152. doi: 10.1093/jee/98.6.2143
Su, N.-Y., & Scheffrahn, R. H. (1990). Economically important termites in the United States and their control. Sociobiology, 17: 77-94.
Treacy, M., Miller, T., Black, B., Gard, I., Hunt, D., & Hollingworth, R. M. (1994). Uncoupling activity and pesticidal properties of pyrroles. Biochemical Society Transactions, 22: 244-247. doi: 10.1042/bst0220244
Vargo, E. L., & Parman, V. (2012). Effect of fipronil on subterranean termite colonies (Isoptera: Rhinotermitidae) in the field. Journal of Economic Entomology, 105: 523-532. doi: 10.1603/EC11155
Downloads
Published
How to Cite
Issue
Section
License
Sociobiology is a diamond open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).