Mechanisms of species coexistence and functional diversity of ant assemblages in forest and pasture habitats in southwestern Brazilian Amazon
DOI:
https://doi.org/10.13102/sociobiology.v67i1.4552Keywords:
Co-occurrence, Formicidae, Morphological Traits, Niche, ResourcesAbstract
In this study, we investigated the mechanisms behind species coexistence and the relationships between functional diversity and species richness in ant assemblages in both forest and pasture habitats in the southwestern Brazilian Amazon. We addressed the specific question: What is the primary mechanism for species coexistence in forest and pasture habitats? According to the identified mechanism in each habitat, we had the following alternative expectations: (i) niche partitioning – we expected to observe a linear positive relationship between functional diversity and species richness, indicating a complementary relationship; or (ii) niche filtering – a positive constant asymptotic relation between functional diversity and species richness, indicating a functional redundancy relationship. In total, we sampled 91 ant species, 82 species in a forest habitat and 16, in a pasture habitat. In the forest habitat we identified niche filtering as the structuring mechanism of the ant assemblage, but we were unable to identify a clear mechanism in the pasture habitat. Although the relationship between functional diversity and species richness was positive in both habitats, the relationship was weaker in the forest habitat, indicating a greater functional redundancy among the ant species in this habitat. Our results reinforce the divergence of species coexistence mechanisms and ant assemblage structures in both natural and human-modified habitats in the Southwestern Brazilian Amazon.
Downloads
References
Andersen, A.N. (1983). Species diversity and temporal distribution of ants in the semi-arid mallee region of northwestern Victoria. Australian Journal Ecology, 8: 127-137. doi: 10.1111/j.1442-9993.1983.tb01600.x
Andersen, A.N. (2008). Not enough niches: non-equilibrial processes promoting species coexistence in diverse ant communities. Austral Ecology, 33: 211-220. doi 10.1111/j.1442-9993.2007.01810.x
Araújo, E.A., Ker, J.C., Mendonça, E.S., Silva, I.R. & Oliveira, E.K. (2011) Impacto da conversão florestal – pastagem nos estoques e na dinâmica do carbono e substâncias húmicas do solo no bioma Amazônico. Acta Amazonica, 41: 103-114. doi: 10.1590/S0044-59672011000100012
Araújo, E.A. & Lani, J.L. (2012). Uso sustentável de ecossistemas de pastagens cultivadas na Amazônia Ocidental, Zoneamento ecológico- econômico. fase II, escala 1:250.000. Sema, Rio Branco, 256 p.
Arnan, X., Gaucherel, C. & Andersen, A.N. (2011). Dominance and species co-occurrence in higly diverse ant communities: a test of the interstitial hypothesis and discovery of a three- tiered competition cascade. Oecologia, 166: 783-794. doi: 10.1007/s00442-011-1919-y
Arnan, X., Cerdá, X. & Retana, J. (2014). Ant functional responses along environmental gradients. Journal Animal Ecology, 83: 1398-1408. doi: 10.1111/1365-2656.12227
Baccaro, F.B., Feitosa, R.M., Fernandez, F., Fernandes, I.O., Izzo, T.J., Souza, J.L.P. & Solar, R. (2015). Chave para as subfamílias e gêneros de formigas do Brasil. In F.B. Baccaro, R.M. Feitosa, F. Fernandez, I.O. Fernandes, T. J. Izzo, J. L. P. Souza & R. Solar (Eds.) Guia para os gêneros de formigas do Brasil (pp 25-114). Inpa, Manaus.
Bihn, J. H., Gebauer, G. & Brandl, R. (2010). Loss of functional diversity of ant assemblages in secondary tropical forests. Ecology, 91: 782-792. doi: 10.1890/08-1276.1
Blüthgen, N. & Feldhaar, H. (2010). Food and shelter: How resources influence ant ecology. In: L. Lach, C. L. Parr & K. L. Abbott (Eds.), Ant Ecology (pp 115-136), Oxford University Press, New York.
Camarota, F., Powell, S., Melo, A.S., Priest, G., Marques, R.J. &Vasconcelos, H.L. (2016). Co-occurrence patterns in a diverse arboreal ant community are explained more by competition than habitat requirements. Ecology and Evolution, 6: 8907-8918. doi: 10.1002/ece3.2606
Cerdá, X., Arnan, X. & Retana, J. (2013). Is competition a significant hallmark of ant (Hymenoptera : Formicidae) ecology? Myrmecological News, 18: 131-147.
Cemaden (2016). Panorama hídrico no estado do Acre: diagnóstico, perspectivas e impactos potenciais relacionados à situação de seca. Cemaden, São José dos Campos.
Debastiani, V.J. & Pillar, V.D. (2012). SYNCSA – R tool for analysis of metacommunities based on functional traits and phylogeny of the community components. Bioinformatics, 28: 2067-2068.
Del Toro, I., Silva, R.R. & Ellison, A.M. (2015). Predicted impacts of climatic change on ant functional diversity and distributions in eastern North American forests. Diversity and Distributions, 21: 781-791. doi: 10.1111/ddi.12331
Dormann, C.F., Gruber, B. & Fruend, J. (2008). Introducing the bipartite Package: Analysing Ecological Networks. R News, 8: 8-11.
Douglas, M.E. & Endler, J.A. (1982). Quantitative matrix comparisons in ecological and evolutionary investigations. Journal Theoretical Biology, 99: 777-795. doi: 10.1016/0022-5193(82)90197-7
Fearnside, P.M. (2005). Desmatamento na Amazônia brasileira: história, índices e consequências. Megadiversidade, 1: 113-123.
Fonseca, C.R. & Ganade, G. (2001). Species functional redundancy, random extinctions and the stability of ecosystems. Journal of Ecoogy, 89: 118-125. doi: 10.1046/j.1365-2745.2001.00528.x
Fowler, D., Lessard, J.P & Sanders, N.J. (2013). Niche filtering rather than partitioning shapes the structure of temperate forest ant communities. Journal Animal Ecology, 83: 943-952. doi: 10.1111/1365-2656.12188
Gotelli, N.J. (2000). Null models analyses of species co-occurrence patterns. Ecology, 81: 2606-2621. doi: 10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2
Gotelli, N.J & Entsminger, G.L. (2004). Eco sim: null models software for ecology. Version 7. Acquired Intelligence Inc. & Kesey- Bear, Jericho, VT. http:/garyentsminger.com/ecosim/index.htm. (acessed date: 17 Janury, 2016).
Gotelli, N.J., Hart, E.M. & Ellison, A.M. (2015). EcoSimR: Null model analysis for ecological data. R package version 0.1.0. http://github.com/gotellilab/EcoSimRdoi:10.5281/zenodo.16522. (accessed date: 1 July, 2017).
Hölldobler, B. & Wilson, E. O. (2009). The super-organism: The beauty, elegance and strangeness of insect societies. W. W. Norton & Company, New York, 522 p
Imazon (2010). A atividade madeireira na Amazônia brasileira: produção, receita e mercados. Serviço Florestal brasileiro, Instituto do homem e meio ambiente. Imazon, Bélem.
Instituto Nacional de Metereologia – INMET (2015). Banco de dados metereológicos para ensino e pesquisa (BDMEP) – dados históricos. http:// www.inmet.gov.br/portal/index.php?r=bdmep/bdmep. (accessed date: 10 July, 2017).
Kaspari, M. & Weiser, M.D. (1999). The size – grain hypothesis and interspecific scaling in ants. Functional Ecology, 13: 530-538. doi: 10.1046/j.1365-2435.1999.00343.x
Kaspari, M., Yanoviak, S.P. & Dudley, R. (2008). On the biogeograph of salt limitation: a study of ant communities. Proceedings of the National Academy of Sciences of the United States of America, 105: 17848-17851. doi: 10.1073/pnas.0804528105
Martello, F., Bello, F., Morini, M.S.C., Silva, R.R., Souza-Campana, D.R., Ribeiro, M.C. & Carmona, C.P. (2018). Homogenization and impoverishment of taxonomic and functional diversity of ants in Eucalyptus plantations. Scientific Reports, 8:3266. doi: 10.1038/541598-018-20823-1
Medeiros, H., Castro, W., Salimon C., Brasil da Silva, I. & Silveira, M. (2013). Tree mortality, recruitment and growth in a bamboo dominated forest fragment in southwestern Amazonia, Brazil. Biota Neotropica, 13: 29-34. Retrived from: http://www.biotaneotropica.org.br/v13n2/en/abstract?article+bn00613022013
Naeem, S., Thompson, L.J., Lawler, S.P., Lawton, J.H. & Woodfin, R.M. (1994). Declining biodiversity can alter the performance of ecosystems. Nature, 368: 734-737. doi: 10.1038/368734a0
Naeem, S., Lindssey, J.T., Lawler, S.P., Lawton, J.H. & Woodfin, R.M. (1995). Empirical evidence that declining species diversity may alter the performance of terrestrial ecosystems. Philosophical Transactions of the Royal Society B, 347: 249-262. doi: 10.1098/rstb.1995.0025
Naeem, S., Loreau, M. & Inchausti, P. (2002). Biodiversity and ecosystem functioning: the emerge of a synthetic ecological framework. In: M. Loreau, S. Naeem & P. Inchausti (Eds.), Biodiversity and ecosystem functioning: synthesis and perspectives (pp. 3-11). Oxford University York.
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, H.H., Szoecs, E., & Wagner, H. (2017). Vegan: Community Ecology Package, version 2.4-3. http://cran.r-project.org, http://github.com/vegandevs/vegan. (accessed date: 10 June, 2017).
Oliveira, A.B.S. & Schmidt, F.A. (2019). Ant assemblages of Brazil nut trees Bertholletia excelsa in forest and pasture habitats in the Southwestern Brazilian Amazon. Biodiversity and Conservation. 28:329-344. doi.org/10.1007/s10531-018-1657-0
Pianka, E.R. (1973). The structure of lizard communities. Annual of Review of Ecology and Systematics, 4: 53-74. doi: 10.1146/annurev.es.04.110173.000413
R Development Core Team (2015). A language and environment for statistical computing. The R project for stastitical computing. http:/www. R-project.org/. (accessed: 15 November, 2015).
Ribas C.R. & Schoereder J.H. (2002). Are all ant mosaics caused by competition? Oecologia, 131: 606-661. doi: 10.1007/s00442-002-0912-x
Schofield, S.F., Bishop, T.R. & Parr, C.L. (2016) Morphological characteristics of ant assemblages (Hymenoptera: Formicidae) differ among contrasting biomes. Myrmecological News, 23: 129-137.
Silva, R.R. & Brandāo, C.R.F. (2010). Morphological patterns and community organization in leaf-litter ant assemblages. Ecological Monographs, 80: 107-124. doi: 10.1890/08-1298.1
Silva, R.R. & Brandão, C.R.F. (2014). Ecosystem-wide morphological structure of leaf-litter ant communities along a tropical latitudinal gradient. PLOS ONE, 9: e93049. doi: 10.1371/journal.pone.0093049
Stone, L. & Roberts, A. (1990). The checkerboard score and species distributions. Oecologia, 85: 74-79. doi: 10.1007/BF00317345
Wiescher, P.T., Pearce-Duvet, J.M.C. & Feener, D.H. (2012). Assembling an ant community: species functional traits reflect environmental filtering. Oecologia, 160: 1063-1674. doi: 10.1007/s00442-012-2262-7
Winemiller, K.O. & Pianka, E.R. (1990). Organization in natural assemblages of desert lizards and tropical fishes. Ecological Monographs, 60: 27-55. doi: 10.2307/1943025
Downloads
Published
How to Cite
Issue
Section
License
Sociobiology is a diamond open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).