Morphometric Variability among Populations of Euglossa cordata (Hymenoptera: Apidae: Euglossini) from Different Phytophysiognomies
DOI:
https://doi.org/10.13102/sociobiology.v66i4.4675Keywords:
Solitary bee, orchid bee, morphological variation, wing shape, wing size.Abstract
Geometric morphometrics is a tool capable of measuring the response of organisms to different environmental pressures. We tested the hypothesis that E. cordata wing morphometry, as an indicator of response to environmental pressure, it would vary depending on habitat changes, in the Atlantic Forest, Savanna and dry forest (Caatinga). For analysis of wing shape and size, 18 landmarks were digitized at the intersections of the wing veins 348 individuals. Except for the two populations sampled in Chapada Diamantina, the wing shape had significant statistical variations among the populations (p < 0.05). The wing size variation was also statistically significant among populations (p < 0.05). Although E. cordata is a species tolerant to different environments, the observed morphometric variability may be related to population adaptations to the conditions of each phytophysiognomy.
Downloads
References
Aguiar, W.M. & Gaglianone, M.C. (2008). Comunidade de abelhas Euglossina (Hymenoptera: Apidae) em remanescentes de mata Estacional Semidecidual sobre Tabuleiro no estado do Rio de Janeiro. Neotropical Entomology, 37: 118-125. doi: 10.1590/S1519-566X2008000200002
Aguiar, W.M. & Gaglianone, M.C. (2012). Euglossine bee communities in small forest fragments of the Atlantic Forest, Rio de Janeiro state, southeastern Brazil (Hymenoptera, Apidae). Revista Brasileira de Entomologia, 56: 210-219. doi: 10.1590/s0085-56262012005000018
Baranovská, E., & Knapp, M. (2018). Steep converse Bergmann’s cline in a carrion beetle: Between-and within-population variation in body size along an elevational gradient. Journal of Zoology, 304: 243-251. doi: 10.1111/jzo.12527
Campos, E.S., Araujo, T.N., Rabelo, L.S., Bastos, E.M.A. & Augusto, S.C. (2018). Does Seasonality Affect the Nest Productivity, Body Size, and Food Niche of Tetrapedia curvitarsis Friese (Apidae, Tetrapediini)? Sociobiology, 65: 576-582. doi: 10.13102/sociobiology.v65i4.3395
Cerântola, N.D.C.M., Oi, C.A., Cervini, M. & Del Lama, M.A. (2010). Genetic differentiation of urban populations of Euglossa cordata from the state of São Paulo, Brazil. Apidologie, 42: 214-222. doi: 10.1051/apido/2010055
Coelho, C.P., Gomes, D.C., Guilherme, F.A.G. & Souza, L.F. (2017). Reproductive biology of endemic Solanum melissarum Bohs (Solanaceae) and updating of its current geographic distribution as the basis for its conservation in the Brazilian Cerrado. Brazilian Journal of Biology, 77: 809-819. doi: 10.1590/1519-6984.01516
Combey, R., Quandahor, P. & Mensah, B.A. (2018). Geometric Morphometrics Captures Possible Segregation Occurring within Subspecies Apis Mellifera Adansonii in Three Agro Ecological Zones. Annals of Biological Research, 9: 31-43
Conceição, A.A., Funch, L.S. & Pirani, J.R. (2007). Reproductive phenology, pollination and seed dispersal syndromes on sandstone outcrop vegetation in the Chapada Diamantina, northeastern Brazil: population and community analyses. Revista Brasileira de Botânica, 30: 475-485. doi: 10.1590/s0100-84042007000300012
Dellicour, S., Gerard, M., Prunier, J.G., Dewulf, A., Kuhlmann, M. & Michez, D. (2017). Distribution and predictors of wing shape and size variability in three sister species of solitary bees. PloS One, 12: e0173109. doi: 10.1371/journal.pone.0173109
Dick, C.W., Roubik, D.W., Gruber, K.F. & Bermingham, E. (2004). Long-distance gene flow and cross Andean dispersal of lowland rainforest bees (Apidae: Euglossini) revealed by comparative mitochondrial DNA phylogeography. Molecular Ecology, 13: 3775-3785. doi: 10.1111/j.1365-294x.2004.02374.x
Ferreira, V.S., Aguiar, C.M.L., Costa, M.A. & Silva, J.G. (2011). Morphometric analysis of populations of Centris aenea Lepeletier (Hymenoptera: Apidae) from Northeastern Brazil. Neotropical Entomology, 40: 97-102. doi: 10.1590/s1519-566x2011000100014
Ferreira-Caliman, M.J., Rocha-Filho, L.C.D., Freiria, G.A. & Garófalo, C.A. (2018). Floral sources used by the orchid bee Euglossa cordata (Linnaeus, 1758) (Apidae: Euglossini) in an urban area of south-eastern Brazil. Grana, 57: 471-480. doi: 10.1080/00173134.2018.1479445
Ferronato, M.C.F., Giangarelli, D.C., Mazzaro, D., Uemura, N. & Sofia, S.H. (2017). Orchid Bee (Apidae: Euglossini) Communities in Atlantic Forest Remnants and Restored Areas in Paraná State, Brazil. Neotropical Entomology, 47: 352-361. doi: 10.1007/s13744-017-0530-2
Francoy, T.M., Franco, F.F. & Roubik, D.W. (2012). Integrated landmark and outline-based morphometric methods efficiently distinguish species of Euglossa (Hymenoptera, Apidae, Euglossini). Apidologie, 43: 609-617. doi: 10.1007/s13592-012-0132-2
Freiria, G.A., Garófalo, C.A. & Del Lama, M.A. (2017). The primitively social behavior of Euglossa cordata (Hymenoptera, Apidae, Euglossini): a view from the perspective of kin selection theory and models of reproductive skew. Apidologie, 48: 523-532. doi: 10.1007/s13592-017-0496-4
Garófalo, C.A. (1985). Social structure of Euglossa cordata nests (Hymenoptera: Apidae: Euglossini). Entomologia Generalis, 11: 77-83. doi: 10.1007/s13592-017-0496-4
Grassi-Sella, M.L., Garófalo, C.A. & Francoy, T.M. (2018). Morphological similarity of widely separated populations of two Euglossini (Hymenoptera; Apidae) species based on geometric morphometrics of wings. Apidologie, 49: 151-161. doi: 10.1007/s13592-017-0536-0
Hammer, O., Harper, D.A.T. & Ryan, P.D. (2001). PAST-Palaeontological Statistics, ver. 1.89. Palaeontologia electronica 4(9). Retrived from: http://palaeo electronica.org/2001_1/past/past.pdf/
Klingenberg, C.P. (2011). MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11: 353-357. doi: 10.1111/j.1755-0998.2010.02924.x
Klingenberg, C.P. (2015). Analyzing fluctuating asymmetry with geometric morphometrics: concepts, methods, and applications. Symmetry, 7: 843-934. doi: 10.3390/sym7020843
López-Uribe, M.M., Oi, C.A. & Del Lama, M.A. (2008). Nectar-foraging behavior of Euglossine bees (Hymenoptera: Apidae) in urban areas. Apidologie, 39: 410-418. doi: 10.1051/apido:2008023
Mendoza-Cuenca, L. & Macías-Ordóñez, R. (2005). Foraging polymorphism in Heliconius charitonia (Lepidoptera: Nymphalidae): morphological constraints and behavioural compensation. Journal of Tropical Ecology, 21: 407-415. doi: 10.1017/s0266467405002385
Mendes, M.F.M., Francoy, T.M., Nunes-Silva, P., Menezes, C. & Imperatriz-Fonseca, V.L. (2007). Intra-populational variability of Nannotrigona testaceicornis Lepeletier, 1836 (Hymenoptera, Meliponini) using relative warps analysis. Bioscience journal, 23: 147-152
Monteiro, L.R. & Reis, S. (1999). Princípios de morfometria geométrica. Ribeirão Preto: Holos Editora, 188 p
Morellato, L.P.C., Talora, D.C., Takahasi, A., Bencke, C.C., Romera, E.C. & Zipparro, V.B. (2000). Phenology of Atlantic Rain Forest Trees: A Comparative Study. Biotropica, 32: 811-823. doi: 10.1111/j.1744-7429.2000.tb00620.x
Moure, J.S., Melo, G.A.R. & Faria Jr, L.R.R. (2012). Euglossini Latreille, 1802. In Moure J.S., Urban D. & Melo G.A.R (Eds.), Catalogue of bees (Hymenoptera, Apoidea) in the Neotropical region - online version. http://www.moure.cria.org.br/catalogue/. (acessed date: 18 April, 2019)
Nemésio, A. (2009). Orchid bees (Hymenoptera: Apidae) of the Brazilian Atlantic Forest. Zootaxa, 2041: 1-242. doi: 10.11646/zootaxa.2041.1.1
Neves, C.M.L., Carvalho, C.A.L., Souza, A.V. & Junior, C.A.L. (2012). Morphometric Characterization of a Population of Tetrapedia diversipes in Restricted Areas in Bahia, Brazil (Hymenoptera: Apidae). Sociobiology, 59: 767-782.
Nunes, L.A., Da Costa, M.D.F.F., Carneiro, P.L.S., Pereira, D.G. & Waldschmidt, A.M. (2007). Divergência genética em Melipona scutellaris Latreille (Hymenoptera: Apidae) com base em caracteres morfológicos. Bioscience Journal, 23: 1-9.
Peruquetti, R.C. (2003). Variação do tamanho corporal de machos de Eulaema nigrita Lepeletier (Hymenoptera, Apidae, Euglossini). Resposta materna à flutuação de recursos? Revista Brasileira de Zoologia, 20: 207-212. doi: 10.1590/s0101-81752003000200006
Pokorny, T., Loose, D., Dyker, G., Quezada-Euán, J.J.G. & Eltz, T. (2015). Dispersal ability of male orchid bees and direct evidence for long-range flights. Apidologie, 46: 224-237. doi: 10.1007/s13592-014-0317-y
Prado-Silva, A., Nunes, L.A., Oliveira Alves, R.M., Carneiro, P.L.S. & Waldschmidt, A.M. (2016). Variation of fore wing shape in Melipona mandacaia Smith, 1863 (Hymenoptera, Meliponini) along its geographic range. Journal of Hymenoptera Research, 48: 85-94. doi: 10.3897/jhr.48.6619
Quezada-Euán, J.J.G., Sheets, H.D., De Luna, E. & Eltz, T. (2015). Identification of cryptic species and morphotypes in male Euglossa: morphometric analysis of forewings (Hymenoptera: Euglossini). Apidologie, 46: 787-795. doi: 10.1007/s13592-015-0369-7
Ribeiro, M., Aguiar, W.M., Nunes, L.A. & Carneiro, L.S. (2019). Morphometric Changes in Three Species of Euglossini (Hym.: Apidae) in Response to Landscape Structure. Sociobiology, 66: 339-347. doi: 10.13102/sociobiology.v66i2.3779
Rohlf, F.J. (2015). tpsDig v2.18. Department of Ecology and Evolution: State University of New York, Stony Brook, New York
Rohlf, F.J. (2013). tpsUtil version 1.6. Department of Ecology and Evolution: State University of New York at Stony Brook
Roubik, D.W. & Hanson, P.E. (2004). Orchids bees of tropical America: biology and field guide. INBio Press: Heredia, Costa Rica.
Scheiner, S.M. (1993). Genetics and Evolution of Phenotypic Plasticity. Annual Review of Ecology and Systematics, 24: 35-68. doi: 10.1146/annurev.ecolsys.24.1.35
Schlichting, C.D. & Wund, M.A. (2014). Phenotypic plasticity and epigenetic marking: an assessment of evidence for genetic accommodation. Evolution, 68: 656-672. doi: 10.1111/evo.12348
Silva, C.I., Augusto, S.C., Sofia, S.H. & Moscheta, I.S. (2007). Diversidade de abelhas em Tecomastans (L.) Kunth (Bignoniaceae): Importância na polinização e produção de frutos. Neotropical Entomology, 36: 331-341. doi: 10.1590/s1519-566x2007000300002
Soro, A., Quezada-Euán, J.J.G., Theodorou, P., Moritz, R.F. & Paxton, R.J. (2017). The population genetics of two orchid bees suggests high dispersal, low diploid male production and only an effect of island isolation in lowering genetic diversity. Conservation Genetics, 18: 607-619. doi: 10.1007/s10592-016-0912-8
Zayed, A. (2009). Bee genetics and conservation. Apidologie, 40: 237-262. doi: 10.1051/apido/2009026. doi: 10.1007/s10 592-011-0221-1
Zimmermann, Y., Schorkopf, D.L.P., Moritz, R.F.A., Pemberton, R.W., Quezada-Euán, J.J.G. & Eltz, T. (2011). Population genetic structure of orchid bees (Euglossini) in anthropogenically altered landscapes. Conservation Genetics, 12: 1183-1194. doi: 10.1007/s10592-011-0221-1
Downloads
Published
How to Cite
Issue
Section
License
Sociobiology is a diamond open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).