Ruderal Plants Providing Bees Diversity on Rural Properties
DOI:
https://doi.org/10.13102/sociobiology.v67i3.4837Keywords:
plant diversity, smallholder rural properties, crops, Atlantic ForestAbstract
Many are the anthropogenic drivers of pollinator decline, but the loss of suitable habitats, among other effects caused by agricultural intensification, deserves special attention. Reduction in the availability of floral resources negatively affects bee communities, compromising bee species composition, foraging behavior, corporal size, and fitness. Our study aims to understand whether the presence of herbaceous plants, acting as foraging sites, next to crops contributes to bee species richness in smallholder rural properties. Bee sampling was performed on smallholder rural properties in the municipality of Guapiara, southern São Paulo state. Individuals who visited the flowers of ruderal plants and crops were collected, using an entomological net, for ten months. A total of 61 bee species were identified, with the highest species richness being sampled in ruderal plant flowers in the three properties studied. Only in one property, ruderal plants hosted a more diverse bee assemblage (Shannon-Weiner and taxonomic diversity indices), but species composition differed from that sampled in crop plants (Jaccard index) in all properties. Thirty-two species were sampled exclusively in ruderal plants, versus 9 only in crops and 20 species in both types of plants. Pollen analysis showed that of the 22 species of bees that were sampled only on flowers of ruderal plants, 9 species carried pollen of tomato and one species of bee carried pollen of kabocha squash. Ruderal plants can provide an alternative food resource for pollinators, enabling these insects to remain in or be attracted to crop areas, where, in addition to visiting such plants, they also visit the cultivated plant flowers. Allowing coexistence between crops and ruderal plants, provided that the issues of plant health are observed, is a simple and low-cost measure for farmers and will provide both economic and environmental benefits.
Downloads
References
Abbas, M., Klein, A. M., Ebeling, A. et al. (2014). Plant diversity effects on pollination and herbivorous insects can be linked to plant stoichiometry. Basic and Applied Ecology 15(2): 169-178. doi: 10.1016/j.baae.2014.02.001
Albrecht, M., Duelli, P., Müller, C., Kleijn, D. & Schmid, B. (2007). The Swiss agri-environment scheme enhances pollinator diversity and plant reproductive success in nearby intensively managed farmland. Journal of Applied Ecology 44: 813-822. doi: 10.1111/j.1365-2664.2007.01306.x
Alomar, D., González-Estévez, M. A., Traveset, A. et al. (2018). The intertwined effects of natural vegetation, local flower community, and pollinator diversity on the production of almond trees. Agriculture, Ecosystems and Environment 264: 34–43. doi: 10.1016/j.agee.2018.05.004
Biesmeijer, J. C., Roberts, S. P. M., Reemer, M., Ohlemüller, R., Edwards, M., Peeters, T., Schaffers, A. P., Potts, S. G., Kleukers, R., Thomas, C. D., Settele, J. & Kunin, W. E. (2006). Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands. Science 313: 351-354. doi: 10.1126/science.1127863
Campbell, A. J., Carvalheiro, L. G., Maués, M. M., Jaffé, R., Giannini, T. C., Freitas, M. A. B., Coelho, B. W. T. & Menezes, C. (2018). Anthropogenic disturbance of tropical forests threatens pollination services to açaí palm in the Amazon river delta. Journal of Applied Ecology 55: 1725-1736. doi: 10.1111/1365-2664.13086
Carreck, N. L. & Williams, I. H. (2002). Food for insects pollinators on farmland: insect visits to flowers of annual seed mixtures. Journal of Insect Conservation 6: 13-23. doi: 10.1023/A:101576492
Carvalheiro, L. G., Veldtman, R., Shenkute, A. G. et al. (2011). Natural and within-farmland biodiversity enhances crop productivity. Ecology Letters 14: 251-259. doi: 10.1111/j.1461-0248.2010.01579.x
CEPAGRI – Centro de Pesquisas Meteorológicas e Climáticas Aplicadas à Agricultura. (2014). http://cpa.unicamp.br/outras-informacoes/clima_muni_203.html (accessed date: 10 January, 2014).
Chateil, C. & Porcher, E. (2015). Landscape features are a better correlate of wild plant pollination than agricultural practices in an intensive cropping system. Agriculture, Ecosystems and Environment 201: 51–57. doi: 10.1016/j.agee.2014.12.008
Fundação Florestal (2019). https://guiadeareasprotegidas.sp.gov.br/ap/pe-intervales/ (accessed date: 15 March, 2019).
Garibaldi, L.A., Steffan-Dewenter, I., Winfree, R. et al. (2013). Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science, 339: 1608-1611. doi: 10.1126/science.1230200
Ghazoul, J. (2006). Floral diversity and the facilitation of pollination. Journal of Ecology 94: 295-304. doi: 10.1111/j.1365-2745.2006.01098.x
Grab, H., Branstetter, M. G., Amon, N. et al. (2019). Agriculturally dominated landscapes reduce bee phylogenetic diversity and pollination services. Science 363: 282-284. doi: 10.1126/science.aat6016
Halinski, R., dos Santos, C.F., Kaehler et al. (2018). Influence of Wild Bee Diversity on Canola Crop Yields. Sociobiology, 65(4): 751-759. doi: 10.13102/sociobiology.v65i4.3467
Hammer, O., Harper, D.A.T. & Ryan, P.D. (2001). PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9
Herrmann, J.D., Beye, H., Broise1, C. et al. (2019). Positive effects of the pollinators Osmia cornuta (Megachilidae) and Lucilia sericata (Calliphoridae) on strawberry quality. Arthropod-Plant Interactions, 13: 71–77. doi: 10.1007/s11829-018-9636-7
Hopwood, J. L. (2008). The contribution od roadside grassland restorations to native bee conservation. Biological Conservation 141: 2632-2640. doi: 10.1016/j.biocon.2008.07.026
Kaluza, B. F., Wallace, H. M., Heard, T. A. et al. (2018). Social bees are fitter in more biodiverse environments. Scientific Reports 8: 12353. doi:10.1038/s41598-018-30126-0
Klein, A.M., Boreux, V., Fornoff, F. et al. (2018). Relevance of wild and managed bees for human well-being. Current Opinion in Insect Science, 26: 82–88. doi:10.1016/j.cois.2018.02.011
Knapp, J. L., Shaw, R. F. & Osborne, J. L. (2019). Pollinator visitation to mass-flowering courgette and co-flowering wild flowers: Implications for pollination and bee conservation on farms. Basic and Applied Ecology 34: 85-94. doi: 10.1016/j.baae.2018.09.003
Kovács-Hostyànszki, A., Körösi, A., Orci, K. M. et al. (2011). Set-aside promotes insect and plant diversity in a Central European country. Agriculture, Ecosystems and Environment 141: 296-301. doi: 10.1016/j.agee.2011.03.004
Kuussaari, M., Hyvönen, T. & Härmä, O. (2011). Pollinator insects benefit from rotational fallows. Agriculture, Ecosystems and Environment 143: 28-36. doi: 10.1016/j.agee.2011.03.006
London-Shafir, I., Shafir, S. & Eisikowitch, D. (2003). Amygdalin in almond nectar and pollen – facts and possible roles. Plant Systematics Evolution 238: 87–95. doi:10.1007/s00606-003-0272-y
Lundin, O., Ward, K. L., Artz, D. R. et al. (2017). Wildflower plantings do not compete with neighboring almond orchards for pollinator visits. Environmental Entomology 46(3): 559–564. doi: 10.1093/ee/nvx052
MacInnis, G. & Forrest, J.R.K. (2019). Pollination by wild bees yields larger strawberries than pollination by honey bees. Journal of Applied Ecology, 56: 824-832. doi: 10.1111/1365-2664.13344
Magurran, A. E. (2004). Measuring Biological Diversity. Oxford: Blackwell Science Ltd., 215 p
Mallinger, R. E., Bradshaw, J., Varenhorst, A. J. & Prasifka, J. R. (2019). Native solitary bees provide economically significant pollination services to confection sunflowers (Helianthus annuus L.) (Asterales: Asteraceae) grown across the northern great plains. Journal of Economic Entomology 112(1): 40–48. doi: 10.1093/jee/toy322
Mao, W., Schuler, M. A. & Berenbaum, M. R. (2013). Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. Proceedings of the National Academy of Sciences of the United States of America 110(2): 8842-8846. doi: 10.1073/pnas.1525259113
Moerman, R., Vanderplanck, M., Roger, N. et al. (2015). Growth rate of bumblebee larvae is related to pollen amino acids. Journal of Economic Entomology 1-6. doi: 10.1093/jee/tov279
Nicholls, C. I. & Altieri, M. A. (2013). Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agronomy for Sustainable Development 33: 257 274. doi: 10.1007/s13593-012-0092-y
Nicholson, C.C. & Ricketts, T.H. (2019). Wild pollinators improve production, uniformity, and timing of blueberry crops. Agriculture, Ecosystems and Environment, 272: 29–37. doi: 10.1016/j.agee.2018.10.018
Norris, S. L., Blackshaw, R. P., Critchley, C. N. R. et al. (2018). Intercropping flowering plants in maize systems increases pollinator diversity. Agricultural and Forest Entomology 20: 246–254. doi: 10.1111/afe.12251
Perrot, T., Gaba, S., Roncoroni, M. et al. (2018). Bees increase oilseed rape yield under real field conditions. Agriculture, Ecosystems and Environment, 266: 39–48. doi: 10.1016/j.agee.2018.07.020
Peterson, J. H. & Roitberg, B. D. (2006). Impact of resource levels on sex ratio and resource allocation in the solitary bee, Megachile rotundata. Environmental Entomology 35(5): 1404-1410. doi: 10.1093/ee/35.5.1404
Potts, S. G., Vulliamy, B., Dafni, A. et al. (2003). Linking bees and flowers: How do floral communities structure pollinator communities? Ecology 84(10): 2628-2642. doi: 10.1890/02-0136
Potts, S.G., Biesmeijer, J.C., Kremen, C. et al. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology and Evolution, 25: 345-353. doi:10.1016/j.tree.2010.01.007
Potts, S.G., Imperatriz-Fonseca, V., Ngo, H.T. et al. (2016). Safeguarding pollinators and their values to human well-being. Nature, 540: 220-229. doi: 10.1038/nature20588
Renauld, M., Hutchinson, A., Loeb, G. et al. (2016). Landscape Simplification Constrains Adult Size in a Native Ground-Nesting Bee. PLoS ONE 11(3): e0150946. doi:10.1371/journal.pone.0150946
Rollin, O., Pérez-Méndez, N., Bretagnolle, V. et al. (2019). Preserving habitat quality at local and landscape scales increases wild bee diversity in intensive farming systems. Agriculture, Ecosystems and Environment 275: 73–80. doi: 10.1016/j.agee.2019.01.012
Torné-Noguera, A., Rodrigo, A., Arnan, X. et al. (2014). Determinants of spatial distribution in a bee community: nesting resources, flower resources, and body size. PLoS ONE 9(5): 1-10. doi: 10.1371/journal.pone.0097255
Tscharntke, T., Batáry, P. & Dormann, C. F. (2011). Set-aside management: How do succession, sowing patters and landscape context affect biodiversity? Agriculture, Ecosystems and Environment 143: 37-44. doi: 10.1016/j.agee.2010.11.025
Vanderplanck, M., Moerman, R., Rasmont, P. et al. (2014). How does pollen chemistry impact development and feeding behavior of polylectic bees? PLoS ONE 9: 1-9. doi: 10.1371/journal.pone.0086209
Venturini, E. M., Drummond, F. A., Hoshide, A. K. et al. (2017). Pollination reservoirs for wild bee habitat enhancement in cropping systems: a review. Agroecology and Sustainable Food Systems 41(2): 101-142. doi: 10.1080/21683565.2016.1258377
Downloads
Published
How to Cite
Issue
Section
License
Sociobiology is a diamond open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).