Grinnelian and Eltonian niche conservatism of the European honeybee (Apis mellifera) in its exotic distribution

Authors

DOI:

https://doi.org/10.13102/sociobiology.v67i2.4901

Keywords:

Apis mellifera, invasive species, climatic niche, niche breadth, niche overlap, resource use

Abstract

The understanding of how niche-related traits change during species invasion have prompted what is now known as the niche conservatism principle. Most studies that have tested the niche conservatism principle have focused on the extent to which the species’ climatic niches remain stable in their exotic distribution. However, it is equality important to address how biotic specialization, i.e. resource use, changes during exotic species invasions. Here, we use the widespread European honeybee (Apis mellifera) to understand whether its Grinnelian and Eltonian niches changed in its exotic distribution using tests of abiotic and biotic niche conservatism. We found that both niche domains of the European honeybee remained stable in its exotic distribution, which means that neither the climatic niche nor the biotic specialization showed significant differences between the native and the exotic ranges. Our findings that climatic and resource use are coupled can be explained by A. mellifera’s long history of domestication and the possibility that life history traits (e.g., polyandry) may have shaped this species’ large niche over the course of evolution and therefore facilitated exotic ranges colonization.

Downloads

Download data is not yet available.

References

Aguirre-Gutiérrez, J., Serna-Chavez, H. M., Villalobos-Arambula, A. R., Pérez de la Rosa, J. a., & Raes, N. (2014). Similar but not equivalent: ecological niche comparison across closely-related Mexican white pines. Diversity and Distributions, 21, 245–257. doi:10.1111/ddi.12268

Alexandre, H., Faure, J., Ginzbarg, S., Clark, J., & Joly, S. (2017). Bioclimatic niches are conserved and unrelated to pollination syndromes in Antillean Gesneriaceae. Royal Society Open Science, 4(11), 170293. doi:10.1098/rsos.170293

Araújo, C. B., Marcondes-Machado, L. O., & Costa, G. C. (2014). The importance of biotic interactions in species distribution models: a test of the Eltonian noise hypothesis using parrots. Journal of Biogeography, 41(3), 513–523. doi:10.1111/jbi.12234

Atwater, D. Z., Ervine, C., & Barney, J. N. (2018). Climatic niche shifts are common in introduced plants. Nature Ecology and Evolution, 2(1), 34–43. doi:10.1038/s41559-017-0396-z

Baselga, A., Orme, D., Villeger, S., Bortoli, J. De, & Leprieur, F. (2013). betapart: Partitioning beta diversity into turnover and nestedness components. R package version 1.3. https://cran.r-project.org/package=betapart

Bloch, G., Francoy, T. M., Wachtel, I., Panitz-Cohen, N., Fuchs, S., & Mazar, A. (2010). Industrial apiculture in the Jordan valley during Biblical times with Anatolian honeybees. Proceedings of the National Academy of Sciences, 107(25), 11240–11244. doi:10.1073/pnas.1003265107

Broennimann, O., Blaise Petitpierre, Randin, C., Engler, R., Cola, V. Di, Breiner, F., et al. (2015). ecospat: Spatial Ecology Miscellaneous Methods.R package version 1.1. http://CRAN.R-project.org/package=ecospat.

Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G., et al. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21(4), 481–497. doi:10.1111/j.1466-8238.2011.00698.x

Davidson, A. M., Jennions, M., & Nicotra, A. B. (2011). Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecology Letters, 14(4), 419–431. doi:10.1111/j.1461-0248.2011.01596.x

Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D’Amen, M., Randin, C., et al. (2017). ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40(6), 774–787. doi:10.1111/ecog.02671

Emer, C., Memmott, J., Vaughan, I. P., Montoya, D., & Tylianakis, J. M. (2016). Species roles in plant-pollinator communities are conserved across native and alien ranges. Diversity and Distributions, 22(8), 841–852. doi:10.1111/ddi.12458

Faleiro, F. V., Silva, D. P., de Carvalho, R. A., Särkinen, T., & de Marco, P. (2015). Ring out the bells, we are being invaded! Niche conservatism in exotic populations of the Yellow Bells, Tecoma stans (Bignoniaceae). Natureza & Conservação, 2–7. doi:10.1016/j.ncon.2015.04.004

Fick, S. E., & Hijmans, R. J. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315.

Fründ, J., Dormann, C. F., Holzschuh, A., & Tscharntke, T. (2013). Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology, 94(9), 2042–2054. doi:10.1890/12-1620.1

GBIF.org. (2017). (8th September 2017) GBIF Occurrence Download https://doi.org/10.15468/dl.f2xikg.

Gibson, M. R., Richardson, D. M., & Pauw, A. (2012). Can floral traits predict an invasive plant’s impact on native plant-pollinator communities? Journal of Ecology, 100(5), 1216–1223. doi:10.1111/j.1365-2745.2012.02004.x

Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C., & Kueffer, C. (2014). Unifying niche shift studies: insights from biological invasions. Trends in Ecology and Evolution, 29(5), 260–269. doi:10.1016/j.tree.2014.02.009

Han, F., Wallberg, A., & Webster, M. T. (2012). From where did the western honeybee (Apis mellifera) originate? Ecology and Evolution, 2(8), 1949–1957. doi:10.1002/ece3.312

Harpur, B. A., Minaei, S., Kent, C. F., & Zayed, A. (2012). Management increases genetic diversity of honey bees via admixture. Molecular Ecology, 21(18), 4414–4421. doi:10.1111/j.1365-294X.2012.05614.x

Hill, M. P., Gallardo, B., & Terblanche, J. S. (2017). A global assessment of climatic niche shifts and human influence in insect invasions. Global Ecology and Biogeography, 26(6), 679–689. doi:10.1111/geb.12578

Hung, K.-L. J., Kingston, J. M., Albrecht, M., Holway, D. A., & Kohn, J. R. (2018). The worldwide importance of honey bees as pollinators in natural habitats. Proceedings of the Royal Society B: Biological Sciences, 285(1870), 20172140. doi:10.1098/rspb.2017.2140

Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., et al. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26(11), 1463–1464. doi:10.1093/bioinformatics/btq166

Larson, E. R., Olden, J. D., & Usio, N. (2010). Decoupled conservatism of Grinnellian and Eltonian niches in an invasive arthropod. Ecosphere, 1(6), art16. doi:10.1890/ES10-00053.1

Mattila, H. R., & Seeley, T. D. (2007). Genetic Diversity in Honey Bee Colonies Enhances Productivity and Fitness. Science, 317(5836), 362–364. doi:10.1126/science.1143046

Montero-Castaño, A., & Vilà, M. (2017). Influence of the honeybee and trait similarity on the effect of a non-native plant on pollination and network rewiring. Functional Ecology, 31(1), 142–152. doi:10.1111/1365-2435.12712

Moritz, R. F. A., Härtel, S., & Neumann, P. (2005). Global invasions of the western honeybee (Apis mellifera) and the consequences for biodiversity. Ecoscience, 12(3), 289–301. doi:10.1007/1-4020-0613-6_5596

Norfolk, O., Gilbert, F., & Eichhorn, M. P. (2018). Alien honeybees increase pollination risks for range-restricted plants. Diversity and Distributions, 24(5), 705–713. doi:10.1111/ddi.12715

Olalla-Tárraga, M., González-Suárez, M., Bernardo-Madrid, R., Revilla, E., & Villalobos, F. (2017). Contrasting evidence of phylogenetic trophic niche conservatism in mammals worldwide. Journal of Biogeography, 44(1), 99–110. doi:10.1111/jbi.12823

Parravicini, V., Azzurro, E., Kulbicki, M., & Belmaker, J. (2015). Niche shift can impair the ability to predict invasion risk in the marine realm: an illustration using Mediterranean fish invaders. Ecology Letters, n/a-n/a. doi:10.1111/ele.12401

Petitpierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C., & Guisan, A. (2012). Climatic niche shifts are rare among terrestrial plant invaders. Science, 335(6074), 1344–1348. doi:10.1126/science.1215933

R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Richardson, D. M., Allsopp, N., D’Antonio, C. M., Milton, S. J., & Rejmánek, M. (2000). Plant invasions--the role of mutualisms. Biological Reviews, 75(1), 65–93. doi:10.1111/j.1469-185X.1999.tb00041.x

Schneider, S. S., DeGrandi-Hoffman, G., & Smith, D. R. (2004). The African honey Bee: Factors Contributing to a Successful Biological Invasion. Annual Review of Entomology, 49(1), 351–376. doi:10.1146/annurev.ento.49.061802.123359

Soberón, J., & Nakamura, M. (2009). Niches and distributional areas: Concepts, methods, and assumptions. Proceedings of the National Academy of Sciences, 106(Supplement_2), 19644–19650. doi:10.1073/pnas.0901637106

Soberón, Jorge. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology letters, 10(12), 1115–23. doi:10.1111/j.1461-0248.2007.01107.x

Tarpy, D. R. (2003). Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proceedings of the Royal Society B: Biological Sciences, 270(1510), 99–103. doi:10.1098/rspb.2002.2199

Techer, M. A., Clémencet, J., Simiand, C., Preeaduth, S., Azali, H. A., Reynaud, B., & Hélène, D. (2017). Large-scale mitochondrial DNA analysis of native honey bee Apis mellifera populations reveals a new African subgroup private to the South West Indian Ocean islands. BMC Genetics, 18(1), 53. doi:10.1186/s12863-017-0520-8

Traveset, A., Olesen, J. M., Nogales, M., Vargas, P., Jaramillo, P., Antolín, E., et al. (2015). Bird–flower visitation networks in the Galápagos unveil a widespread interaction release. Nature Communications, 6, 6376. doi:10.1038/ncomms7376

Vital, M. V. C., Hepburn, R., Radloff, S., & Fuchs, S. (2012). Geographic distribution of africanized honeybees (Apis mellifera) reflects niche characteristics of ancestral African subspecies. Natureza a Conservacao, 10(2), 184–190. doi:10.4322/natcon.2012.021

Wallberg, A., Han, F., Wellhagen, G., Dahle, B., Kawata, M., Haddad, N., et al. (2014). A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nature Genetics, 46(10), 1081–1088. doi:10.1038/ng.3077

Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution, 62(11), 2868–2883. doi:10.1111/j.1558-5646.2008.00482.x

Webb, C. O., & Donoghue, M. J. (2005). Phylomatic: Tree assembly for applied phylogenetics. Molecular Ecology Notes, 5(1), 181–183. doi:10.1111/j.1471-8286.2004.00829.x

Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V, et al. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology letters, 13(10), 1310–24. doi:10.1111/j.1461-0248.2010.01515.x

Downloads

Published

2020-06-30

How to Cite

Medina, A. M., & Almeida-Neto, M. (2020). Grinnelian and Eltonian niche conservatism of the European honeybee (Apis mellifera) in its exotic distribution. Sociobiology, 67(2), 239–246. https://doi.org/10.13102/sociobiology.v67i2.4901

Issue

Section

Research Article - Bees

Most read articles by the same author(s)