Grinnelian and Eltonian niche conservatism of the European honeybee (Apis mellifera) in its exotic distribution
DOI:
https://doi.org/10.13102/sociobiology.v67i2.4901Keywords:
Apis mellifera, invasive species, climatic niche, niche breadth, niche overlap, resource useAbstract
The understanding of how niche-related traits change during species invasion have prompted what is now known as the niche conservatism principle. Most studies that have tested the niche conservatism principle have focused on the extent to which the species’ climatic niches remain stable in their exotic distribution. However, it is equality important to address how biotic specialization, i.e. resource use, changes during exotic species invasions. Here, we use the widespread European honeybee (Apis mellifera) to understand whether its Grinnelian and Eltonian niches changed in its exotic distribution using tests of abiotic and biotic niche conservatism. We found that both niche domains of the European honeybee remained stable in its exotic distribution, which means that neither the climatic niche nor the biotic specialization showed significant differences between the native and the exotic ranges. Our findings that climatic and resource use are coupled can be explained by A. mellifera’s long history of domestication and the possibility that life history traits (e.g., polyandry) may have shaped this species’ large niche over the course of evolution and therefore facilitated exotic ranges colonization.Downloads
References
Aguirre-Gutiérrez, J., Serna-Chavez, H. M., Villalobos-Arambula, A. R., Pérez de la Rosa, J. a., & Raes, N. (2014). Similar but not equivalent: ecological niche comparison across closely-related Mexican white pines. Diversity and Distributions, 21, 245–257. doi:10.1111/ddi.12268
Alexandre, H., Faure, J., Ginzbarg, S., Clark, J., & Joly, S. (2017). Bioclimatic niches are conserved and unrelated to pollination syndromes in Antillean Gesneriaceae. Royal Society Open Science, 4(11), 170293. doi:10.1098/rsos.170293
Araújo, C. B., Marcondes-Machado, L. O., & Costa, G. C. (2014). The importance of biotic interactions in species distribution models: a test of the Eltonian noise hypothesis using parrots. Journal of Biogeography, 41(3), 513–523. doi:10.1111/jbi.12234
Atwater, D. Z., Ervine, C., & Barney, J. N. (2018). Climatic niche shifts are common in introduced plants. Nature Ecology and Evolution, 2(1), 34–43. doi:10.1038/s41559-017-0396-z
Baselga, A., Orme, D., Villeger, S., Bortoli, J. De, & Leprieur, F. (2013). betapart: Partitioning beta diversity into turnover and nestedness components. R package version 1.3. https://cran.r-project.org/package=betapart
Bloch, G., Francoy, T. M., Wachtel, I., Panitz-Cohen, N., Fuchs, S., & Mazar, A. (2010). Industrial apiculture in the Jordan valley during Biblical times with Anatolian honeybees. Proceedings of the National Academy of Sciences, 107(25), 11240–11244. doi:10.1073/pnas.1003265107
Broennimann, O., Blaise Petitpierre, Randin, C., Engler, R., Cola, V. Di, Breiner, F., et al. (2015). ecospat: Spatial Ecology Miscellaneous Methods.R package version 1.1. http://CRAN.R-project.org/package=ecospat.
Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G., et al. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21(4), 481–497. doi:10.1111/j.1466-8238.2011.00698.x
Davidson, A. M., Jennions, M., & Nicotra, A. B. (2011). Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecology Letters, 14(4), 419–431. doi:10.1111/j.1461-0248.2011.01596.x
Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D’Amen, M., Randin, C., et al. (2017). ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40(6), 774–787. doi:10.1111/ecog.02671
Emer, C., Memmott, J., Vaughan, I. P., Montoya, D., & Tylianakis, J. M. (2016). Species roles in plant-pollinator communities are conserved across native and alien ranges. Diversity and Distributions, 22(8), 841–852. doi:10.1111/ddi.12458
Faleiro, F. V., Silva, D. P., de Carvalho, R. A., Särkinen, T., & de Marco, P. (2015). Ring out the bells, we are being invaded! Niche conservatism in exotic populations of the Yellow Bells, Tecoma stans (Bignoniaceae). Natureza & Conservação, 2–7. doi:10.1016/j.ncon.2015.04.004
Fick, S. E., & Hijmans, R. J. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315.
Fründ, J., Dormann, C. F., Holzschuh, A., & Tscharntke, T. (2013). Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology, 94(9), 2042–2054. doi:10.1890/12-1620.1
GBIF.org. (2017). (8th September 2017) GBIF Occurrence Download https://doi.org/10.15468/dl.f2xikg.
Gibson, M. R., Richardson, D. M., & Pauw, A. (2012). Can floral traits predict an invasive plant’s impact on native plant-pollinator communities? Journal of Ecology, 100(5), 1216–1223. doi:10.1111/j.1365-2745.2012.02004.x
Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C., & Kueffer, C. (2014). Unifying niche shift studies: insights from biological invasions. Trends in Ecology and Evolution, 29(5), 260–269. doi:10.1016/j.tree.2014.02.009
Han, F., Wallberg, A., & Webster, M. T. (2012). From where did the western honeybee (Apis mellifera) originate? Ecology and Evolution, 2(8), 1949–1957. doi:10.1002/ece3.312
Harpur, B. A., Minaei, S., Kent, C. F., & Zayed, A. (2012). Management increases genetic diversity of honey bees via admixture. Molecular Ecology, 21(18), 4414–4421. doi:10.1111/j.1365-294X.2012.05614.x
Hill, M. P., Gallardo, B., & Terblanche, J. S. (2017). A global assessment of climatic niche shifts and human influence in insect invasions. Global Ecology and Biogeography, 26(6), 679–689. doi:10.1111/geb.12578
Hung, K.-L. J., Kingston, J. M., Albrecht, M., Holway, D. A., & Kohn, J. R. (2018). The worldwide importance of honey bees as pollinators in natural habitats. Proceedings of the Royal Society B: Biological Sciences, 285(1870), 20172140. doi:10.1098/rspb.2017.2140
Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., et al. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26(11), 1463–1464. doi:10.1093/bioinformatics/btq166
Larson, E. R., Olden, J. D., & Usio, N. (2010). Decoupled conservatism of Grinnellian and Eltonian niches in an invasive arthropod. Ecosphere, 1(6), art16. doi:10.1890/ES10-00053.1
Mattila, H. R., & Seeley, T. D. (2007). Genetic Diversity in Honey Bee Colonies Enhances Productivity and Fitness. Science, 317(5836), 362–364. doi:10.1126/science.1143046
Montero-Castaño, A., & Vilà, M. (2017). Influence of the honeybee and trait similarity on the effect of a non-native plant on pollination and network rewiring. Functional Ecology, 31(1), 142–152. doi:10.1111/1365-2435.12712
Moritz, R. F. A., Härtel, S., & Neumann, P. (2005). Global invasions of the western honeybee (Apis mellifera) and the consequences for biodiversity. Ecoscience, 12(3), 289–301. doi:10.1007/1-4020-0613-6_5596
Norfolk, O., Gilbert, F., & Eichhorn, M. P. (2018). Alien honeybees increase pollination risks for range-restricted plants. Diversity and Distributions, 24(5), 705–713. doi:10.1111/ddi.12715
Olalla-Tárraga, M., González-Suárez, M., Bernardo-Madrid, R., Revilla, E., & Villalobos, F. (2017). Contrasting evidence of phylogenetic trophic niche conservatism in mammals worldwide. Journal of Biogeography, 44(1), 99–110. doi:10.1111/jbi.12823
Parravicini, V., Azzurro, E., Kulbicki, M., & Belmaker, J. (2015). Niche shift can impair the ability to predict invasion risk in the marine realm: an illustration using Mediterranean fish invaders. Ecology Letters, n/a-n/a. doi:10.1111/ele.12401
Petitpierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C., & Guisan, A. (2012). Climatic niche shifts are rare among terrestrial plant invaders. Science, 335(6074), 1344–1348. doi:10.1126/science.1215933
R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Richardson, D. M., Allsopp, N., D’Antonio, C. M., Milton, S. J., & Rejmánek, M. (2000). Plant invasions--the role of mutualisms. Biological Reviews, 75(1), 65–93. doi:10.1111/j.1469-185X.1999.tb00041.x
Schneider, S. S., DeGrandi-Hoffman, G., & Smith, D. R. (2004). The African honey Bee: Factors Contributing to a Successful Biological Invasion. Annual Review of Entomology, 49(1), 351–376. doi:10.1146/annurev.ento.49.061802.123359
Soberón, J., & Nakamura, M. (2009). Niches and distributional areas: Concepts, methods, and assumptions. Proceedings of the National Academy of Sciences, 106(Supplement_2), 19644–19650. doi:10.1073/pnas.0901637106
Soberón, Jorge. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology letters, 10(12), 1115–23. doi:10.1111/j.1461-0248.2007.01107.x
Tarpy, D. R. (2003). Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proceedings of the Royal Society B: Biological Sciences, 270(1510), 99–103. doi:10.1098/rspb.2002.2199
Techer, M. A., Clémencet, J., Simiand, C., Preeaduth, S., Azali, H. A., Reynaud, B., & Hélène, D. (2017). Large-scale mitochondrial DNA analysis of native honey bee Apis mellifera populations reveals a new African subgroup private to the South West Indian Ocean islands. BMC Genetics, 18(1), 53. doi:10.1186/s12863-017-0520-8
Traveset, A., Olesen, J. M., Nogales, M., Vargas, P., Jaramillo, P., Antolín, E., et al. (2015). Bird–flower visitation networks in the Galápagos unveil a widespread interaction release. Nature Communications, 6, 6376. doi:10.1038/ncomms7376
Vital, M. V. C., Hepburn, R., Radloff, S., & Fuchs, S. (2012). Geographic distribution of africanized honeybees (Apis mellifera) reflects niche characteristics of ancestral African subspecies. Natureza a Conservacao, 10(2), 184–190. doi:10.4322/natcon.2012.021
Wallberg, A., Han, F., Wellhagen, G., Dahle, B., Kawata, M., Haddad, N., et al. (2014). A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nature Genetics, 46(10), 1081–1088. doi:10.1038/ng.3077
Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution, 62(11), 2868–2883. doi:10.1111/j.1558-5646.2008.00482.x
Webb, C. O., & Donoghue, M. J. (2005). Phylomatic: Tree assembly for applied phylogenetics. Molecular Ecology Notes, 5(1), 181–183. doi:10.1111/j.1471-8286.2004.00829.x
Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V, et al. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology letters, 13(10), 1310–24. doi:10.1111/j.1461-0248.2010.01515.x
Downloads
Published
How to Cite
Issue
Section
License
Sociobiology is a diamond open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).