Isolation and Characterization of P450 Gene from the Formosan Subterranean Termite, Coptotermes formosanus (Isoptera: Rhinotermitidae)

Authors

  • Jianchu Mo Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University
  • Yue Zhou Institute of Life sciences, Jiangsu University
  • Keping Chen Institute of Life sciences, Jiangsu University
  • Qinggang Xu Institute of Life sciences, Jiangsu University

DOI:

https://doi.org/10.13102/sociobiology.v59i4.493

Keywords:

Characterization, Coptotermes formosanus Shiraki, Cytochrome P450, Real-time PCR

Abstract

A cytochrome P450 gene belonging to family9 was isolated from the midgut transcriptome of the termite Coptotermes formosanus Shiraki, for screening enzymes related to biomass degeneration. Some studies show that insect P450 enzymes have ligninase activities for catalyzing lignin degradation. We employed the RACE method to clone this cytochrome P450 gene, named CYP9AX1 (GenBank accession No.JN969113). To the best of our knowledge, CYP9AX1 is the first member of the CYP9 family cloned from this termite. The full-length CYP9AX1 cDNA was 2242 bp long and included a 1599bp open-reading-frame (ORF), a 61-bp 5’-untranslated region (UTR) and a 592-bp 3’-UTR (excluding the poly-A tail). The CYP9AX1 protein deduced from the ORF contains 532 amino acids with a predicted signal peptide composed of 20 amino acid at its N-terminal and the classic heme-binding domain FXXGXXXCXG (residues 468-477). At position 473, residue Arg (R) changes to Gln (Q), this suggests that CYP9AX1 is a new type of CYP subfamily 9A. The phylogenetic tree showed that C. formosanus has high genetic relationship with Blattella germanica and Diploptera punctata. Quantitative RT-PCR assays demonstrated that CYP9AX1 was expressed most abundantly in malpighian tubules, and slightly lower in the head, foregut, midgut and hindgut. The results suggested that CYP9AX1 may be involved in enzymatic detoxification systems of the delignification process in C. formosanus.

Downloads

Download data is not yet available.

References

Ai, J., Q. Yu, T. Cheng, F. Dai, X. Zhang, Y. Zhu & Z. Xiang 2010. Characterization of multiple CYP9A genes in the silkworm, Bombyx mori. Mol Biol Rep 37: 1657-1664.

Aw, T., K. Schlauch, C.I. Keeling, S. Young, J.C. Bearfield, G.J. Blomquist & C. Tittiger 2010. Functional genomics of mountain pine beetle (Dendroctonus ponderosae) midguts and fat bodies. BMC Genomics 11: 215.

Chung, H., T. Sztal, S. Pasricha, M. Sridhar, P. Batterham & P.J. Daborn 2009. Characterization of Drosophila melanogaster cytochrome P450 genes. Proc Natl Acad Sci USA 106:5731- 5736.

Feyereisen, R. 1999. Insect P450 enzymes. Annu Rev Entomol 44: 507-533.

Geib, S.M., T.R. Filley, P.G. Hatcher, K. Hoover, J.E. Carlson, M. Jimenez-Gasco Mdel, A. Nakagawa-Izumi, R.L. Sleighter & M. Tien 2008. Lignin degradation in wood-feeding insects. Proc Natl Acad Sci USA 105: 12932-12937.

Hardstone, M.C., O. Komagata, S. Kasai, T. Tomita & J.G. Scott 2010. Use of isogenic strains indicates CYP9M10 is linked to permethrin resistance in Culex pipiens quinquefasciatus. Insect Mol Biol 19: 717-726.

Itokawa, K., O. Komagata, S. Kasai, Y. Okamura, M. Masada & T. Tomita 2010. Genomic structures of Cyp9m10 in pyrethroid resistant and susceptible strains of Culex quinquefasciatus. Insect Biochem Mol Biol 40: 631-640.

Ke, J., D. Singh & S.L. Chen 2011. Aromatic compound degradation by the wood-feeding termite Coptotermes formosanus (Shiraki). International Biodeterioration & Biodegradation 65: 744-756.

Larkin, M.A., G. Blackshields, N.P. Brown, R. Chenna, P.A. McGettigan, H. McWilliam, F. Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T.J. Gibson & D.G. Higgins2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.

Livak, K.J. & T.D. Schmittgen 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.

Mao, W., M.A. Schuler & M.R. Berenbaum 2011. CYP9Q-mediated detoxification of acaricides in the honey bee (Apis mellifera). Proc Natl Acad Sci U S A 108: 12657- 12662.

Nebert, D.W. & F.J. Gonzalez 1987. P450 genes: structure, evolution, and regulation. Annu Rev Biochem 56: 945-993.

Nelson, D.R. 1998. Cytochrome P450 nomenclature. Methods Mol Biol 107: 15-24.

Nelson, D.R., L. Koymans, T. Kamataki, J.J. Stegeman, R. Feyereisen, D.J. Waxman, M.R. Waterman, O. Gotoh, M.J. Coon, R.W. Estabrook, I.C. Gunsalus & D.W. Nebert 1996. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6: 1-42.

Rewitz, K.F., R. Rybczynski, J.T. Warren & L.I. Gilbert 2006. Identification, characterization and developmental expression of Halloween genes encoding P450 enzymes mediating ecdysone biosynthesis in the tobacco hornworm, Manduca sexta. Insect Biochem Mol Biol 36: 188-199.

Ronquist, F. & J.P. Huelsenbeck 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.

Rose, R.L., D. Goh, D.M. Thompson, K.D. Verma, D.G. Heckel, L.J. Gahan, R.M. Roe & E. Hodgson 1997. Cytochrome P450 (CYP)9A1 in Heliothis virescens: the first member of a new CYP family. Insect Biochem Mol Biol 27: 605-615.

Scharf, M.E. & D.G. Boucias 2010. Potential of termite-based biomass pre-treatment strategies for use in bioethanol production. Insect Science 17: 166-174.

Scott, J.G. 1999. Cytochromes P450 and insecticide resistance. Insect Biochem Mol Biol 29: 757-777.

Scott, J.G., N. Liu & Z. Wen 1998. Insect cytochromes P450: diversity, insecticide resistance and tolerance to plant toxins. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 121: 147-155.

Scott, J.G. & Z. Wen 2001. Cytochromes P450 of insects: the tip of the iceberg. Pest Manag Sci 57: 958-967.

Stevens, J.L., M.J. Snyder, J.F. Koener & R. Feyereisen 2000. Inducible P450s of the CYP9 family from larval Manduca sexta midgut. Insect Biochem Mol Biol 30: 559-568.

Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei & S. Kumar 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731-2739.

Werck-Reichhart, D. & R. Feyereisen 2000. Cytochromes P450: a success story. Genome Biol 1: REVIEWS3003.

Zhang, Y.L., M. Kulye, F.S. Yang, L. Xiao, Y.T. Zhang, H. Zeng, J.H. Wang & Z.X. Liu 2011. Identification, characterization, and expression of a novel P450 gene encoding CYP6AE25 from the Asian corn borer, Ostrinia furnacalis. J Insect Sci 11: 37.

Zhou, X., C. Ma, M. Li, C. Sheng, H. Liu & X. Qiu 2010. CYP9A12 and CYP9A17 in the cotton bollworm, Helicoverpa armigera: sequence similarity, expression profile and xenobiotic response. Pest Manag Sci 66: 65-73.

Downloads

Published

2014-08-25

How to Cite

Mo, J., Zhou, Y., Chen, K., & Xu, Q. (2014). Isolation and Characterization of P450 Gene from the Formosan Subterranean Termite, Coptotermes formosanus (Isoptera: Rhinotermitidae). Sociobiology, 59(4), 1121–1135. https://doi.org/10.13102/sociobiology.v59i4.493

Issue

Section

Articles