Survival Rate, Food Consumption, and Tunneling of the Formosan Subterranean Termite (Isoptera: Rhinotermitidae) Feeding on Bt and non-Bt Maize
DOI:
https://doi.org/10.13102/sociobiology.v59i4.505Keywords:
Coptotermes formosanus, GM Bt maize, non-target effect, consumption behavior, tunnelingAbstract
Although several termite species were reported to be susceptible to some Bacillus thuringiensis (Bt) subspecies, no research has been conduced to evaluate the possible non-target effect of genetically modified (GM) Bt crops on termites. In this study, plant tissues of three commercial planted Bt maize (YieldGard* Corn Borer, Genuity* VT Triple PROTM and Genuity* SmartStaxTM) and two non-Bt maize hybrids were provided to Formosan subterranean termite, Coptotermes formosanus, as food. Five food sources including wood blocks and filter paper treated with maize leaf extract as well as leaves, stalks, and roots of maize were tested in the laboratory. The experiment was maintained for two weeks and the survival rate of termites, food consumption, and tunneling behavior were recorded. The results revealed no significant differences in survival rate, food consumption and length of tunnels between termites feeding on Bt and non-Bt maize planting materials, indicating that Bt proteins expressed in the three Bt maize products did not negatively affect C. formosanus. However, compared to wood block and filter paper treatments, termites feeding on maize tissues showed different consumption pattern and tunneling behavior. Our study also suggests that maize stalk is a good candidate for termite bait matrices.
Downloads
References
Bravo, A., S. Likitvivatanavong, S. S. Gill, M. Soberón. 2011. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Molec. Biol. 41: 423-431. DOI: https://doi.org/10.1016/j.ibmb.2011.02.006
Bulmer, M. S., and R. H. Crozier. 2004. Duplication and diversifying selection among termite antifungal peptides. Mol. Biol. Evol. 21: 2256-2264. DOI: https://doi.org/10.1093/molbev/msh236
Castilhos-fortes, R., T. S. Matsumura, E. Diehl, and L. M. Fiuza. 2002. Susceptibility of Nasutitermes ehrhardti (Isoptera: Termitidae) to Bacillus thuringiensis subspecies. Braz. J. Microbiol. 33:219-222. DOI: https://doi.org/10.1590/S1517-83822002000300006
Chen, J., and G. Henderson. 1996. Determination of feeding preference of Formosan subterranean termite (Coptotermes formosanus Shiraki) for some amino acid additives. J. Chem. Ecol. 22: 2359-2369. DOI: https://doi.org/10.1007/BF02029552
Chen, J., G. Henderson, C. C. Grimm, S. W. Lloyd, and R. A. Laine. 1998. Termites fumigate their nest with naphthalene. Nature 392: 558-559. DOI: https://doi.org/10.1038/33305
Chouvenc, T., and N.-Y. Su. 2012. When subterranean termites challenge the rules of fungal epizootics. PLoS ONE. 7: e34484. DOI: https://doi.org/10.1371/journal.pone.0034484
Dai, Z.-R., and J.-Z. Luo. 1980. Preliminary observation on feeding of Formosan subterranean termites. Chin. Bull. Entomol. 17: 74-76 (in Chinese).
Das, N. R., and A. Chaudhary. 2011. Detection and quantification of Bt toxin in transgenic (Bt) cotton rhizospheric soil of northern India. Environ. Ecol. 29: 600-602.
Frankenhuyzen, K. V.. 2009. Insecticidal activity of Bacillus thuringiensis crystal proteins. J. Invertebr. Pathol. 101: 1-16. DOI: https://doi.org/10.1016/j.jip.2009.02.009
Gautam, B. K., and G. Henderson. 2011a. Effects of sand moisture level on food consumption and distribution of Formosan subterranean termite (Isoptera: Rhinotermitidae) with different soldier proportions. J. Entomol. Sci. 46: 1-13. DOI: https://doi.org/10.18474/0749-8004-46.1.1
Gautam, B. K., and G. Henderson. 2011b. Relative humidity preference and survival of starved Formosan subterranean termites (Isoptera: Rhinotermitidae) at various temperature and relative humility conditions. Environ. Entomol. 40: 1232-1238. DOI: https://doi.org/10.1603/EN11062
Hapukotuwa, N. K., and J. K. Grace. 2011. Comparative study of the resistance of six Hawaii-grown bamboo species to attack by the subterranean termites Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann) (Blattodea: Rhinotermitidae). Insects 2: 475-485. DOI: https://doi.org/10.3390/insects2040475
Helassa, N., A. M’Charek, H. Quiquampoix, S. Noinville, P. Déjardin, R. Frutos, S. Staunton. 2011. Effects of physicochemical interactions and microbial activity on the persistence of Cry1Aa Bt (Bacillus thuringiensis) toxin in soil. Soil Biol. Biochem. 43: 1089-1097. DOI: https://doi.org/10.1016/j.soilbio.2011.01.030
Henderson, G. 2008. The termite menace in New Orleans: did they cause the floodwalls to tumble? Am. Entomol. 54: 156-162. DOI: https://doi.org/10.1093/ae/54.3.156
Hernández-Rodríguez, C.S., A. Boets, J. Van Rie, and J. Ferré. 2009. Screening and identification of vip genes in Bacillus thuringiensis strains. J. Appl. Microbiol. 107:219-225. DOI: https://doi.org/10.1111/j.1365-2672.2009.04199.x
Husseneder, C., and J. K. Grace. 2005. Genetically engineered termite gut bacteria (Enterobacter cloacae) deliver and spread foreign genes in termite colonies. Appl. Microbiol. Biotechnol. 68: 360-367. DOI: https://doi.org/10.1007/s00253-005-1914-5
James, C., 2011. Executive summary of global status of commercialized biotech/GM crops. Brief 43, pp. 290. ISAAA Ithaca, NY, USA.
Khan, K. I., Q. Fazal, and R.H. Jafri. 1977. Pathogenicity of locally discovered Bacillus thuringiensis strain to the termites: Heterotermes indicola (Wassman) and Microcerotermes championi (Snyder). Pak. J. Sci. Res. 29: 12–13.
Khan, K. I., R. H. Jafri, and M. Ahmad. 1985. The pathogenicity and development of Bacillus thuringiensis in termites. Pak. J. Zool. 17: 201-209.
Khan, K. I., R. H. Jafri, and M. Ahmed. 2004. Enhancement of pathogenicity of Bacillus thuringiensis by gamma rays. Pol. J. Microbiol. 53:159-66.
Khan, K. I.. 1981. Ph.D. Thesis. Study of pathogens of termites of Pakistan, University of the Punjab, Lahore, Pakistan.
Khan, K.I., Q. Fazal, and R.H. Jafri. 1978. Development of Bacillus thuringiensis in a termite, Heterotermes indicola (Wassman). Pak. J. Sci. Res. 30: 117-119.
Koziel, M. G. , G. L. Beland, C. Bowman, N. B. Carozzi, R. Crenshaw, L. Crossland, J. Dawson, N. Desai, M. Hill, S. Kadwell, K. Launis, K. Lewis, D. Maddox, K. McPherson, M. R. Meghji, E. Merlin, R. Rhodes, G. W. Warren, M. Wright and S. V. Evola. 1993. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Nat. Biotechnol. 11: 194-200. DOI: https://doi.org/10.1038/nbt0293-194
Li, S.-N., Y.-L. Yu, D.-Y. Zhang, D.-F. Fan, J. He, Y. Genrong, and G.-R. Yuan. 2001. Effect of Brown-rot Fungi, Gloeophyllum trabeum, on trail-following responses to several insecticides and on field efficacy for dam termite control. Chinese J. Pest. Sci. 3: 35-40 (in Chinese).
Mill, A. E.. 1992. Termites as agricultural pests in Amazonas, Brazil. Outlook Agr. 21: 41–46. DOI: https://doi.org/10.1177/003072709202100107
Mohan, M., S. N. Sushil, G. Selvakumar, J. C. Bhatt, G. T. Gujar, and H. S. Gupta. 2009. Differential toxicity of Bacillus thuringiensis strains and their crystal toxins against high-altitude Himalayan populations of diamondback moth, Plutella xylostella L. Pest Manag. Sci. 65: 27-33. DOI: https://doi.org/10.1002/ps.1639
Muchaonyerwa, P. , and S. M. Waladde. 2007. Persistence of the pesticidal Bacillus thuringiensis protein expressed in Bt maize plant materials in two soils of the Central Eastern Cape, South Africa. S. Afr. Tydskr. Plant Grond 24: 26-31. DOI: https://doi.org/10.1080/02571862.2007.10634777
Naranjo, S.. 2009. Impacts of Bt crops on non-target invertebrates and insecticide use patterns. CAB Rev. Perspect. Agric. Vet. Sci. Nutrit. Nat. Resour. 4: 1-23. DOI: https://doi.org/10.1079/PAVSNNR20094011
Nkunika, P. O. Y.. 1994. Control of termites in Zambia: practical realities. Insect Sci. Appl. 15: 241–245. DOI: https://doi.org/10.1017/S1742758400015526
Roh, J. Y., J. Y. Choi, M. S. Li, B. R. Jin, and Y. H. Je. 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17: 547-559.
Rosengaus, R. B., T. Cornelisse, K. Guschanski and J. F. A. Traniello. 2007. Inducible immune proteins in the dampwood termite Zootermopsis angusticollis. Naturwissenschaften 94: 25-33. DOI: https://doi.org/10.1007/s00114-006-0151-9
Rouland-Lefèvre, C. 2011. Termites as pests of agriculture. pp: 499-517 in: D. E. Bignell, Y. Roisin and N. Lo (eds.) Biology of termites: a modern Synthesis. DOI: https://doi.org/10.1007/978-90-481-3977-4_18
Sanahuja, G., R. J. Banakar, R. M. Twyman, T. Capell, and P. Christou. 2011. Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol. J. 9: 283-300. DOI: https://doi.org/10.1111/j.1467-7652.2011.00595.x
Saxena D., S. Pushalkar, and G. Stotzky. 2010. Fate and effects in soil of Cry proteins from Bacillus thuringiensis: influence of physicochemical and biological characteristics of soil. The Open Toxinol. J. 3:151-171. DOI: https://doi.org/10.2174/1875414701003010151
Schnepf, E., N. Crickmore, J. V. Rie, D. Lereclus, J. Baum, J. Feitelson1, D. R. Zeigler, and D. H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. R. 62: 775-806. DOI: https://doi.org/10.1128/MMBR.62.3.775-806.1998
Singha, D., B. Singha, and B. K. Dutta. 2010. In vitro pathogenicity of Bacillus thuringiensis against tea termites. J. Biol. Control 24: 279-281.
Smythe, R. V. and H. C. Coppel. 1965. The susceptibility of Reticulitermes flavipes (Kollar) and other termite species to an experimental preparation of Bacillus thuringiensis Berliner. J. Invertebr. Pathol. 7: 423-426. DOI: https://doi.org/10.1016/0022-2011(65)90116-3
Su, N. Y., and R. H.Scheffrahn. 1986. The Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae), in the United States: 1907-1985, pp: 31-38. In: P. A. Zungoli (ed.), Proceedings of the National Conference on Urban Entomology, Univ. Maryland, College Park, MD.
Tan, S. Y., B. F. Cayabyab, E. P. Alcantara, Y. B. Ibrahim, F. Huang, E.E. Blankenship, and B. D. Siegfried. 2011. Comparative susceptibility of Ostrinia furnacalis, Ostrinianubilalis and Diatraea saccharalis (Lepidoptera: Crambidae) to Bacillus thuringiensis Cry1 toxins. Crop Prot. 30: 1184-1189. DOI: https://doi.org/10.1016/j.cropro.2011.05.009
Tapp, H., and G. Stotzky. 1998. Persistence of the insecticidal toxin from Bacillus thuringiensis subsp. kurstaki in soil. Soil Biol. Biochem. 30: 471–476. DOI: https://doi.org/10.1016/S0038-0717(97)00148-X
Vincent, S.. 2010. From microbial sprays to insect-resistant transgenic plants: history of the biospesticide Bacillus thuringiensis. A review. Agron. Sustain. Dev. 31: 217-231. DOI: https://doi.org/10.1051/agro/2010027
Zhang, J.-H., Z.-L. Liu, and L. Huang. 2009. A review on the termite bait monitoring system. J. Hunan Univ. Arts Sci. 21: 78-80 (in Chinese).
Zhang, S.-T., X.-E. Lin, and Z. Liang. 1995. A primary studies on the biological and ecological specialty of the termites. J. Shanxi Agric. Sci. 23: 44-48 (in Chinese).
Downloads
Published
How to Cite
Issue
Section
License
Sociobiology is a diamond open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).