Can Baited Pitfall Traps for Sampling Dung Beetles Replace Conventional Traps for Sampling Ants?

Authors

  • Kelley Rita Przybyszewski Universidade do Estado de Mato Grosso (UNEMAT), Programa de Pós‐Graduação em Ambiente e Sistemas de Produção Agrícola, Tangará da Serra-MT, Brazil
  • Ricardo José Silva State University of Mato Grosso
  • Ricardo Eduardo Vicente State University of Mato Grosso
  • João Victor Garcia Freitas State University of Mato Grosso
  • Mônica Josene Barbosa Pereira State University of Mato Grosso
  • Thiago Junqueira Izzo Federal University of Mato Grosso
  • Danielle Storck Tonon State University of Mato Grosso

DOI:

https://doi.org/10.13102/sociobiology.v67i3.5201

Keywords:

Método de coleta, Protocolo de coleta, Desenho da amostra, Esforço de amostragem.

Abstract

Ants  and  dung  beetles  are  widely  used  in  monitoring  biodiversity  and  are  considered  excellent  environmental  indicators.  Although  the pitfall trap is the most commonly used method to sample dung beetles and ants in ecological studies, beetles are usually sampled using dung‐baited pitfall traps while ants are sampled using un‐baited pitfalls. In the protocol for collecting the beetles it is necessary to have attractive baits in pitfalls. In order to minimize collection effort and costs and to facilitate logistics, it is necessary to determine if there is an effect of the baits on the biodiversity of ants collected in the same traps. Therefore, the objective of this work was to find out whether baited pitfalls could replace conventional pitfalls for the capture of ants. In a total of 42 areas of native habitat, three baited pitfall traps and three without bait were installed, all in the same transect, equidistant ten meters and in activity for 48 hours. In total, 150 species were collected, of which 131 were recorded in non‐baited pitfalls and 107 in baited pitfalls. Traps without bait contributed to 28% of the total number of species captured in this study, whereas pitfalls with bait contributed only to 12% of the total species caught. However, 60% of the total species were captured regardless of the method. In addition to the loss of species among the types of traps, the effect of the method modifies the species composition. We concluded that depending on the type of study, a small decrease in the number of species and change in the composition can influence the results. Thus, we recommend that baited pitfalls should not replace conventional pitfalls.

Palavras-chave: Método de coleta; Protocolo de coleta; Desenho da amostra; Esforço de amostragem.

Downloads

Download data is not yet available.

Author Biographies

Ricardo José Silva, State University of Mato Grosso

Universidade do Estado de Mato Grosso (UNEMAT), Centro de Pesquisas, Estudos e Desenvolvimento Agroambientais (CPEDA), Laboratório de Zoologia, Tangará da Serra, MT, Brasil

Ricardo Eduardo Vicente, State University of Mato Grosso

Universidade do Estado de Mato Grosso (UNEMAT), Centro de Pesquisas e Tecnologia na Amazônia (CEPTAM), Laboratório de Biologia Vegetal. Alta Floresta, MT, Brasil

João Victor Garcia Freitas, State University of Mato Grosso

Universidade do Estado de Mato Grosso (UNEMAT), Programa de Pós-Graduação em Meio Ambiente e Sistemas de Produção Agrícola, Tangará da Serra, MT, Brasil.

Mônica Josene Barbosa Pereira, State University of Mato Grosso

Universidade do Estado de Mato Grosso (UNEMAT), Programa de Pós-Graduação em Meio Ambiente e Sistemas de Produção Agrícola, Tangará da Serra, MT, Brasil.

Thiago Junqueira Izzo, Federal University of Mato Grosso

Universidade Federal de Mato Grosso (UFMT), Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Cuiabá - MT, Brasil

Danielle Storck Tonon, State University of Mato Grosso

Universidade do Estado de Mato Grosso (UNEMAT), Programa de Pós-Graduação em Meio Ambiente e Sistemas de Produção Agrícola, Tangará da Serra, MT, Brasil.

References

Agosti, D., Majer, JD, Alonso, L. & Schultz, TR (2000). Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, 280p.

Alonso, LE & Agosti, D. (2000). Biodiversity studies, monitoring, and ants: an overview. In: Agosti, D., Majer, JD, Alonso, LE, Schultz, TR (Eds.), Ants: Standard Methods for Measuring and Monitoring Biodiversity. Smithsonian Institution Press, Washington, 280p.

Alvares, CA, Stape, JL & Sentelhas, PC (2013). Koppens climate classification map for Brazil. Meteorol Zeitschrift, 22: 711-728. doi: 10.1127/0941-2948/2013/0507.

Anderson, MJ (2017). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26: 32–46. doi: 10.1111 / j.14429993.2001.01070.pp.x.

Aquino, AM, Aguiar-Menezes, EL & Queiroz, JM (2006). Recomendações

para coleta de artrópodes terrestres por armadilhas de queda ("pitfall- traps"). Seropédica: Embrapa Agrobiologia, 8p.

Baccaro, FB, Feitosa, RM, Fernández, F., Fernandes, IO, Izzo, TJ, Souza, JLP & Solar, R. (2015). Guia Para os Gêneros de Formigas do Brasil. Editora INPA, Manaus, 388p. doi:10.5281/zenodo.32912

Barlow, J., Louzada, J., Parry, L., Hernández, HJ, Peres, C., Vaz-de-Mello, FZ & Gardner, T. (2010). Improving the design and management of forest strips in human-dominated tropical landscapes: a field test on Amazonian dung beetles. Journal of Applied Ecology, 47: 779–788.

doi:10.1111/j.1365-2664.2010.01825.x.

Barton, K. (2019). MuMIn: Multi-Model Inference.

Bharti, H., Bharti, M. & Pfeifer, M. (2016). Ants as bio-indicators of ecosystem health in Shivalik Mountains of Himalayas: assessment of species diversity and invasive species. Asian myrmecology, 8: 65-79. doi: 10.20362 / am.008023.

Bestelmeyer, BT, Agosti, D., Leeanne, F., Alonso, T., Brandão, CRF, Brown, WL, Delabie, JHC & Silvestre, R. (2000). Field techniques for the study of ground-living ants: An Overview, description, and evaluation. In D. Agosti, JD Majer, A. Tennant & T. de Schultz (eds), Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, 280p.

Brown, KS (1997). Diversity, disturbance, and sustainable use of Neo-tropical forests: insects as indicators for conservation monitoring. Journal of Insect Conservation, 1: 25-42. doi: 10.1023/A:1018422807610.

Campos, RI, Vasconcelos, HL, Andersen, AN, Frizzo, TLM & Spena, KC

(2011). Multi- scale ant diversity in savanna woodlands: an intercontinental comparison. Austral Ecology, 36: 983-992. doi: 10.1111/j.1442-9993.2011.02255.x.

Delabie, JHC, Fisher, BL, Majer, JD & Wrigth, IW (2000). Sampling effort and choice of methods. In: Agosti, D., Majer, J.D., Alonso, L.E., Schultz, T.R. (Eds.), Ants Standard Methods for Measuring and Monitoring Biodiversity. Smithsonian Institution Press, Washington, 280p.

Del Toro, I., Ribbons, RR & Pelini, SL (2012). The little things that run the world revisited: a review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecological News, 17:133-146.

Dufrene, M. & Legendre, P. (1997). Species Assemblages and Indicator Species: the need for a flexible asymmetrical approach. Ecological Monographs, 67: 345-366. doi: 10.2307/2963459.

Engelbrecht, IA (2010). Invertebrate species inventories in protected area management: are they useful? African Entomology, 18: 235-245. doi: 10.4001/003.018.0203.

Gardner, TA, Barlow, J., Araujo, IS, Ávila-Pires, TC, Bonaldo, AB, Costa, JE & Peres, CA (2008). The cost-effectiveness of biodiversity surveys in tropical forests. Ecology Letters, 11: 139–50. doi:10.1111/j.1461-0248.2007.01133.x.

Gomes, CB, Souza, JLP & Franklin, E. (2018). A comparison between time of exposure, number of pitfall traps and the sampling cost to capture ground-dwelling poneromorph ants (Hymenoptera: Formicidae).

Sociobiology, 65: 138–148. doi: 10.13102 /socio biolo gy.v65i2 .1207.

Hoffmann, BD & Andersen, AN (2003). Responses of ants to disturbance in Australia, with particular reference to functional groups. Austral Ecology, 28: 444–464. doi: 10.1046/j.1442-9993.2003.01301.x.

Hölldobler, B. & Wilson, EO (1990). The ants. Cambridge: The Belknap Press of Harvard University Press, 732p.

Hsieh, TC, Ma, KH & Chao, A. (2016). iNEXT: INterpolation and extrapolation for species diversity. Methods in Ecology and Evolution, 7: 1451-1456. doi: 10.1111/2041-210X.12613.

Ivanov, K. & Keiper, J. (2009). Effectiveness and biases of winkler litter extraction and pitfall trapping for collecting ground-dwelling ants in northern temperate forests. Environmental Entomology, 38: 1725–1736. doi: 10.1603 / 022.038.0626.

Lasmar, CJ, Queiroz, ACM, Rabello, AM, Feitosa, RM, Canedo-Júnior, EO, Schmidt, FA, Cuissi, RG & Ribas, CR (2017). Testing the effect of pitfall-trap installation on ant sampling. Insectes Sociaux, 64:445–451. doi: 10.1007 / s00040-017-0558-7.

Lobo, JM, Martin-Piera, F. & Veiga, CM (1988). Las trampas pitfall com cebo, suspossibilidades em el estúdio de las comudades coprófagas de Scarabaeidae (Col.). I. Características determinantes de su capacidade de captura. Revue d’ Ecologie et de Biologie du Sol, 25: 77-100.

Longino, JT (2009). Additions to the new world Pheidole taxonomy. Zootaxa, 2181: 1-90.

Lopes, CT & Vasconcelos, HL (2008). Evaluation of three methods for sampling ground-dwelling ants in the Brazilian Cerrado. Neotropical Entomology, 37: 399–405. doi:10.1590/S1519-566X2008000400007.

Louzada, J., Lima, AP, Matavelli, R., Zambaldi, L. & Barlow, J. (2010). Community structure of dung beetles in Amazonian savannas: role of fire disturbance, vegetation and landscape structure. Landscape ecology, 25: 631-641. doi: 10.1007 / s10980-010-9448-3.

Marcuzzo, FFN & Melo, DCR (2011). Distribuição espaço-temporal e sazonalidade das chuvas no estado do Mato Grosso. Revista Brasileira de Recursos Hídricos 16: 157–167. doi:10.21168/rbrh.v16n4.p157-167.

Marques, EQ, Marimon-Junior, BH, Marimon, BS Matricardi, EAT, Mews, HA & Colle, GR (2019). Redefining the Cerrado–Amazonia transition: implications for conservation. Biodiversity and Conservation, 29: 1501-1517. doi: 10.1007/s10531-019-01720-z.

McGill, BJ, Etienne, RS, Gray, JS, Alonso, D., Anderson, MJ, Benecha, HK, Dornelas, M., Enquist, BJ, Green, JL., Hurlbert, AH, Magurran, AE, Marquet, P A, Maurer, BA, Ostling, A., Soykan, CU, Ugland, KI & White, E. (2007). Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecology Letters, 10:1–21. doi: 10.1111 / j.1461-0248.2007.01094.x.

Nichols, ES & Gardner, TA (2011). Dung Beetles as a candidate study taxon in applied biodiversity conservation research. In L. W. Simmons & T. J. Ridsdill-Smith (Eds.), Ecology and Evolution of Dung Beetles. Oxford, 570 p.

Nichols, E., Spector, S., Louzada, J., Larsen, T., Amezquita, S. & Favila, ME (2008). Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biological Conservation, 141: 1461-1474. doi: 10.1016 / j.biocon.2008.04.011.

Nunes, RV, Carvalho, MSG, Vaz-de-Mello, FZ, Dáttilo, WD & Izzo, TJ (2014). Taxonomic composition of Scarabaeinae dung beetles (Coleoptera: carabaeidae) inhabiting fluvial islands in the southern Brazilian Amazon, Annales de la Société entomologique de France (N.S.), 50:3-4. doi:10.1080/00379271.2014.984955.

Oksanen, J., Blanchet, FG, Friendly, MI (2019). Vegan: Community Ecology Package.

Peres-Neto, PR & Jackson, DA (2001). How well do multi-variate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia, 129: 169-178. doi: 10.1007/s004420100720.

Ribas, CR, Campos, RBF., Schmidt, FA & Solar, RC (2012). Ants as indicators in Brazil: a review with suggestions to improve the use of ants in environmental monitoring programs. Psyche, 2012: 1-23. doi: 10.1155/2012/636749.

Roberts, DW (2016). Labdsv: Ordination and Multivariate Analysis for Ecology.

Rosa, DB, de Sousa, RR & Nascimento, LA (2007). A distribuição espacial das chuvas na porção centro oeste do estado de Mato Grosso- Brasil. Revista Eletrônica da Associação dos Geógrafos Brasileiros, 1: 127–152.

Silveira, JM, Louzada, J., Barlow, J., Andrade, R., Mestre, L., Solar, R., Lacau, S. & Cochrane, MA (2016). A multi‐taxa assessment of biodiversity change after single and recurrent wildfires in a Brazilian Amazon forest. Biotropica, 48:170-180. doi: 10.1111 / btp.12267.

Soares, SA, Antonialli-júnior, WF & Lima-júnior, SE (2010). Diversidade de formigas epigéias (Hymenoptera, Formicidae) em dois ambientes no Centro-Oeste do Brasil. Revista Brasileira de Entomologia, 54: 76-81. doi: 10.1590/S0085-56262010000100009.

Souza, JLP, Baccaro, FB, Landeiro, VL, Franklin, E. & Magnusson, WE (2012). Trade-offs between complementarity and redundancy in the use of different sampling techniques for ground-dwelling ant assemblages. Applied Soil Ecology, 56: 63–73. doi: 10.1016 / j.apsoil.2012.01.004.

Souza, JLP., Baccaro, FB, Landeiro, VL, Magnusson, WE, Pequeno, PAC. & Fernandes, IO. (2016). Taxonomic sufficiency and indicator taxa reduce sampling costs and increase monitoring effectiveness for ants. Diversity and Distributions, 22: 111–122. doi:10.1111/ddi.12371.

Souza, JLP, Baccaro, FB, Pequeno, PACL, Franklin, E. & Magnusson, WE (2018). Effectiness of genera as a higher-taxon substitute for species in ant biodiversity analyses is not affected by sampling technique. Biodiversity and Conservation, 27: 3425-3445. doi: 10.1007/s10531-018-1607-x.

Tista, M. & Fiedler, K. (2010). How to evaluate and reduce sampling effort for ants. Journal Insect Conservation, 15: 547–559.

Underwood, EC & Fisher, BL (2006). The role of ants in conservation monitoring: If, when, and how. Biological Conservation, 132: 166-182. doi: 10.1016/ j.biocon.2006.03.022.

Wickham, H. (2016). Ggplot2: Elegant Graphics for Data Analysis.

Downloads

Published

2020-09-30

How to Cite

Przybyszewski, K. R., Silva, R. J., Vicente, R. E., Garcia Freitas, J. V., Pereira, M. J. B., Izzo, T. J., & Tonon, D. S. (2020). Can Baited Pitfall Traps for Sampling Dung Beetles Replace Conventional Traps for Sampling Ants?. Sociobiology, 67(3), 376–387. https://doi.org/10.13102/sociobiology.v67i3.5201

Issue

Section

Research Article - Ants