Weather Variables Affecting the Behaviour of Insect Flower Visitors and Main Pollinators of Erythroxylum myrsinites Martius (Erythroxylaceae)


  • Rafael Barbizan Sühs Universidade Federal de Santa Catarina
  • Alexandre Somavilla Instituto Nacional de Pesquisas da Amazônia
  • Eduardo Luís Hettwer Giehl Universidade Federal de Santa Catarina



Community ecology, insect-community, insect-plant interaction, Polybia, wasps


Basic research assessing environmental effects on entire pollinator communities are still uncommon, particularly for rare and commercially unattractive plant-pollinator partners. We investigated the community of flower visitors of Erythroxylum myrsinites to check for potential pollinators and to check the extent of weather influence of visitor behaviour, registered as the number of visitors attending flowers of E. myrsinites. We then calculated species’ dominance and constancy and assessed location of pollen attachment in each visitor’s body. We correlated weather variables with the composition and abundance of visits carried out by the entire community and by most constant and dominant species. The wasps Polybia sericea, P. ignobilis and P. fastidiosuscula showed the highest values of constancy, dominance and attached pollen. There was a community-level effect of atmospheric pressure, solar radiation and wind speed on the number of visits. Atmospheric pressure affected the number of visits of eudominant species P. fastidiosuscula and P. sericea, while solar radiation affected the number of visits of P. ignobilis. Our results demonstrate the influence of weather variables on flower visiting insects and suggest the importance of native wasps in pollen transport and pollination, a relationship that should be further studied under the worldwide bee pollination decline.


Download data is not yet available.


Abrol, D.P. (1988). Environmental factors influencing pollination activity of Apis mellifera on Brassica campestris. Journal of the Indian Institute of Science, 68: 49-52.

Amaral Jr., A. (1980). Erythroxylaceae. In R. Reitz (Ed.), Flora Ilustrada Catarinense. (pp. 1-64).

Barros, M.G. (1998). Sistemas reprodutivos e polinização em espécies simpátricas de Erythroxylum P. Br.(Erythroxylaceae) do Brasil. Revista Brasileira de Botânica, 21: 1-11. doi: 10.1590/S0100-84041998000200008 DOI:

Burrill, R.M. & Dietz, A. (1981). The response of honey bees to variations in solar radiation and temperature. Apidologie, 12: 319-328. DOI:

Cardinal, S. & Danforth, B.N. (2012). Bees diversified in the age of eudicots. Proceedings of the Royal Society B, 280. doi: 10.1098/rspb.2012.2686 DOI:

Case, A.L. & Barrett, S.C.H. (2004). Environmental stress and the evolution of dioecy: Wurmbea dioica (Colchicaceae) in Western Australia. Evolutionary Ecology, 18: 145-164. DOI:

Crepet, W.L., Friis, E.M., Nixon, K.C., Lack, A.J. & Jarzembowski, E.A. (1991). Fossil evidence for the evolution of biotic pollination. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 333(1267): 187-195. DOI:

da Silva, F.J.T., Schwade, M.R.M. & Webber, A.C. (2007). Fenologia , biologia floral e polinização de Erythroxylum cf macrophyllum (Erythroxylaceae), na Amazônia Central. Revista Brasileira de Biologia, 5: 186-188.

Faegri, K. & van der Pijl, L. (1971). Principles of Pollination Ecology (2nd ed.). Elsevier. doi: 10.1016/B978-0-08-023160-0.50018-9 DOI:

Fijen, T.P. M. & Kleijn, D. (2017). How to efficiently obtain accurate estimates of flower visitation rates by pollinators. Basic and Applied Ecology, 19: 11-18. doi: 10.1016/j.baae. 2017.01.004 DOI:

Freitas, L. & Sazima, M. (2006). Pollination biology in a tropical high-altitude grassland in Brazil: interactions at the community level. Annals of the Missouri Botanical Garden, 93: 465-516. DOI:[465:PBIATH]2.0.CO;2

Ganders, F.R. (1979). Heterostyly in Erythroxylum coca (Erythroxylaceae). Botanical Journal of the Linnean Society, 78: 11-20. doi: 10.1111/j.1095-8339.1979.tb02182.x DOI:

Garibaldi, L.A., Steffan-Dewenter, I., Winfree, R., Aizen, M.A., Bommarco, R., Cunningham, S.A., Kremen, C., Carvalheiro, L.G., Harder, L.D., Afik, O., Bartomeus, I., Benjamin, F., Boreux, V., Cariveau, D., Chacoff, N.P., Dudenhöffer, J.H., Freitas, B.M., Ghazoul, J., Greenleaf, S., … Klein, A.M. (2013). Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science, 340(6127): 1608-1611. doi: 10.1126/science.1230200 DOI:

Grimaldi, D. (1999). The co-radiations of pollinating insects and angiosperms in the Cretaceous. Annals of the Missouri Botanical Garden: 86: 373-406. DOI:

Heithaus, E.R. (1979). Community structure of neotropical flower visiting bees and wasps: diversity and phenology. Ecology, 60: 190-202. DOI:

Johnson, S., Linder, H. & Steiner, K. (1998). Phylogeny and radiation of pollination systems in Disa (Orchidaceae). American Journal of Botany, 85: 402-411. DOI:

Kearns, C.A. & Inouye, D.W. (1993). Techniques for pollination biologists. University press of Colorado. University Press of Colorado.

Kevan, P.G. & Baker, H.G. (1983). Insects as Flower Visitors and Pollinators. Annual Review of Entomology, 28: 407-453. doi: 10.1146/annurev.en.28.010183.002203 DOI:

Kjøhl, M., Nielsen, A., Stenseth, N.C. & others. (2011). Potential effects of climate change on crop pollination. Food and Agriculture Organization of the United Nations (FAO).

Köppen, W.P. (1931). Grundis der Klimakunde. In Berlin, Germany. Walter de Gruyter & Co. DOI:

Loiola, M.I.B., & Costa-Lima, J.L. (2015). Erythroxylaceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. retrieved from:

Lundie, A.E. (1925). The flight activities of the honeybee. United States Department of Agriculture, 1328: 1-38. doi: 10.1007/s13398-014-0173-7.2 DOI:

Macior, L.W. (1982). Plant community and pollinator dynamics in the evolution of pollination mechanisms in Pedicularis (Scrophulariaceae). In Armstrong, J.A.,Powel, J.M. and Richards, A.J. (eds), Pollination and Evolution, Sydney, Royal Botanical Gardens, 29-45.

Nielsen, A., Reitan, T., Rinvoll, A.W. & Brysting, A.K. (2017). Effects of competition and climate on a crop pollinator community. Agriculture, Ecosystems and Environment, 246: 253-260. doi: 10.1016/j.agee.2017.06.006 DOI:

Ollerton, J. (1996). Reconciling Ecological Processes with Phylogenetic Patterns: The Apparent Paradox of Plant--Pollinator Systems. Journal of Ecology, 84: 767-769. DOI:

Ollerton, J., Winfree, R. & Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120: 321-326. DOI:

Pailler, T., Humeau, L. & Thompson, J. D. (1998). Distyly and heteromorphic incompatibility in oceanic island species of Erythroxylum (Erythroxylaceae). Plant Systematics and Evolution, 213: 187-198. doi: 10.1007/BF00985199 DOI:

Secretaria de Estado do Meio Ambiente. DOE 07-06-2016, Seção I, p. 69-71, Resolução SMA No 57, (2016).

Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O. & Kunin, W.E. (2010). Global pollinator declines : trends , impacts and drivers. Trends in Ecology and Evolution, 25: 345-353. doi: 10.1016/j.tree.2010.01.007 DOI:

Proctor, M., Yeo, P. & Lack, A. (1996). The natural history of pollination. HarperCollins Publishers.

R Development Core Team 3.0.1. (2013). A Language and Environment for Statistical Computing. In R Foundation for Statistical Computing.

Rader, R., Bartomeus, I., Garibaldi, L.A., Garratt, M.P.D., Howlett, B.G., Winfree, R., Cunningham, S.A., Mayfield, M.M., Arthur, A.D., Andersson, G.K.S. & others. (2016). Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences, 113: 146-151. DOI:

Rech, A.R., de Avila Jr, R.S. & Schlindwein, C. (2014). Síndromes de polinização: especialização e generalização. In Biologia da Polinização (pp. 171–181).

Rosas, F. & Domínguez, C.A. (2009). Male sterility, fitness gain curves and the evolution of gender specialization from distyly in Erythroxylum havanense. Journal of Evolutionary Biology, 22: 50-59. doi: 10.1111/j.1420-9101.2008.01618.x DOI:

Somavilla, A., Sühs, R. B. & Köhler, A. (2010). Entomofauna associated to the floration of Schinus terebinthifolius Raddi (Anacardiaceae) in the Rio Grande do Sul state, Brazil. Bioscience Journal, 26: 956-965.

Sühs, R.B., Somavilla, A., Köhler, A. & Putzke, J. (2009). Pollen vector wasps (Hymenoptera, Vespidae) of Schinus terebinthifolius Raddi (Anacardiaceae), Santa Cruz do Sul, RS, Brazil. Brazilian Journal of Biosciences, 7: 138-143.

Thomazini, M.J. & Thomazini, A.P. (2002). Diversidade de abelhas (Hymenoptera: Apoidea) em inflorescências de Piper hispidinervum (C. DC.). Neotropical Entomology, 31: 27-34. DOI:

Wang, Y., Naumann, U., Wright, S.T., Warton, D.I., Wang, A.Y. & Naumann, U. (2013). Package “mvabund”: Statistical methods for analysing multivariate abundance data. Methods in Ecology and Evolution, 3, 471-474. DOI:




How to Cite

Sühs, R. B., Somavilla, A., & Giehl, E. L. H. (2021). Weather Variables Affecting the Behaviour of Insect Flower Visitors and Main Pollinators of Erythroxylum myrsinites Martius (Erythroxylaceae). Sociobiology, 68(1), e5451.



Research Article - Wasps

Most read articles by the same author(s)

<< < 1 2