Honey bee colony losses: Why are honey bees disappearing?
DOI:
https://doi.org/10.13102/sociobiology.v68i1.5851Keywords:
honey bee losses, colony collapse disorder, Varroa destructor, viral diseases, nosematosis, negative pressuresAbstract
The Western honey bee (Apis mellifera L., Hymenoptera: Apidae) is a species of crucial economic, agricultural and environmental importance.
In the last ten years, some regions of the world have suffered from a significant reduction of honey bee colonies. In fact, honey bee losses are not an unusual phenomenon, but in many countries worldwide there has been a notable decrease in honey bee families. The cases in the USA, in many European countries, and in the Middle East have received considerable attention, mostly due to the absence of an easily identifiable cause.
It has been difficult to determine the main factors leading to colony losses because of honey bees’ diverse social behavior. Moreover, in their daily routine, they make contact with many agents of the environment and are exposed to a plethora of human activities and their consequences. Nevertheless, a number of different factors are considered to be contributing to honey bee losses, and recent investigations have established some of the most important ones, in particular, pests and diseases, bee management, including bee keeping practices and breeding, the change in climatic conditions, agricultural practices, and the use of pesticides. The global picture highlights the ectoparasitic mite Varroa destructor as a major factor in colony loss. Last but not least, microsporidian parasites, mainly Nosema ceranae, also contribute to the problem.
Thus, it is obvious that many factors are involved in honey bee colony losses globally. Increased monitoring and scientific research should throw new light on the factors involved in recent honey bee colony losses.
This review focuses on the main factors which have been found to have an impact on the increase in honey bee colony losses.
Downloads
References
Neumann, P.; Carreck, N.L. Honey bee colony losses. J. Apic. Res. 2010, 49, 1–6. DOI: https://doi.org/10.3896/IBRA.1.49.1.01
Taniguchi, T.; Kita, Y.; Matsumoto, T.; Kimura, K. Honeybee Colony Losses during 2008~2010 Caused by Pesticide Application in Japan. J. Apic. 2012, 27, 15-27.
Liu, Z.; Chen, C.; Niu, Q.; Qi, W.; Yuan, C.; Su, S.; Liu, S.; Zhang, Y.; Zhang, X.; Ji, T.; et al. Survey results of honey bee (Apis mellifera) colony losses in China (2010–2013). J. Apic. Res. 2016, 55, 29-37. DOI: https://doi.org/10.1080/00218839.2016.1193375
Al-Ghamdi, A.; Adgaba, N.; Getachew, A.; Tadesse, Y. New approach for determination of an optimum honeybee colony’s carrying capacity based on productivity and nectar secretion potential of bee forage species. Saudi J. Biol. Sci. 2016, 23, 92-100. DOI: https://doi.org/10.1016/j.sjbs.2014.09.020
FAO. FAOSTAT Database. Food and Agriculture Organization of the United Nations 2009. Retrieved from http://www.fao.org/faostat/en/#home.
Potts, S.G.; Roberts, S.P.; Dean, R.; Marris, G.; Brown, M.A.; Jones, R.; Neumann, P.; Settele, J. Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 2010, 49, 15-22. DOI: https://doi.org/10.3896/IBRA.1.49.1.02
Sammataro, D.; Gerson, U.; Needham, G. Parasitic mites of honey bees: life history, implications, and impact. Annu. Rev. Entomol. 2000, 45, 519-548. DOI: https://doi.org/10.1146/annurev.ento.45.1.519
Dhooria, M.S. Parasitic Mites on Honeybees. In: Fundamentals of Applied Acarology. Springer, Singapore, 2016. DOI: https://doi.org/10.1007/978-981-10-1594-6
Shen, M.; Cui, L.; Ostiguy, N.; Cox-Foster, D. Intricate transmission routes and interactions between picorna-like viruses (Kashmir bee virus and sacbrood virus) with the honeybee host and the parasitic varroa mite. J. Gen. Virol. 2005, 86, 2281–2289. DOI: https://doi.org/10.1099/vir.0.80824-0
Iwasaki, J.M.; Barratt, B.I.; Lord, J.M.; Mercer, A.R.; Dickinson, K.J. The New Zealand experience of varroa invasion highlights research opportunities for Australia. Ambio 2015, 44, 694–704. DOI: https://doi.org/10.1007/s13280-015-0679-z
Medina Flores, C.A.; Guzmán Novoa, E.; Hamiduzzaman, M.; Aréchiga Flores, C.F.; López Carlos, M.A. Africanized honey bees (Apis mellifera) have low infestation levels of the mite Varroa destructor in different ecological regions in Mexico. Genet. Mol. Res. 2014, 13, 7282-7293. DOI: https://doi.org/10.4238/2014.February.21.10
Oddie, M.; Büchler, R.; Dahle, B.; Kovacic, M.; Le Conte, Y.; Locke, B.; de Miranda, J.R.; Mondet, F.; Neumann, P. Rapid parallel evolution overcomes global honey bee parasite. Sci. Rep. 2018, 8, 7704. DOI: https://doi.org/10.1038/s41598-018-26001-7
Ramsey, S.D.; Ochoa, R.; Bauchan, G.; Gulbronson, C.; Mowery, J.D.; Cohen, A.; Lim, D.; Joklik, J.; Cicero, J.M.; Ellis, J.D.; et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. PNAS 2019, 116, 1792-1801. DOI: https://doi.org/10.1073/pnas.1818371116
Rinkevich, F.D.; Danka, R.G.; Healy, K.B. Influence of Varroa Mite (Varroa destructor) Management Practices on Insecticide Sensitivity in the Honey Bee (Apis mellifera). Insects 2017, 8, 9. DOI: https://doi.org/10.3390/insects8010009
Peck, D.T.; Smith, M.L.; Seeley, T.D. Varroa destructor Mites Can Nimbly Climb from Flowers onto Foraging Honey Bees. PloS One 2016, 11, e0167798. DOI: https://doi.org/10.1371/journal.pone.0167798
Oddie, M.; Dahle, B.; Neumann, P. Norwegian honey bees surviving Varroa destructor mite infestations by means of natural selection. PeerJ 2017, 5, e3956. DOI: https://doi.org/10.7717/peerj.3956
Floris, I.; Cabras, P.; Garau, V.L.; Minelli, E.V.; Satta, A.; Troullier, J. Persistence and effectiveness of pyrethroids in plastic strips against Varroa jacobsoni (Acari: Varroidae) and mite resistance in a Mediterranean area. J. Econ. Entomol. 2001, 94, 806-810. DOI: https://doi.org/10.1603/0022-0493-94.4.806
Macedo, P.A.; Wu, J.; Ellis, M.D. Using inert dusts to detect and assess varroa infestations in honey bee colonies. J. Apic. Res. 2002, 41, 3-7. DOI: https://doi.org/10.1080/00218839.2002.11101062
Mozes-Koch, R.; Slabezki, Y.; Efrat, H.; Kalev, H.; Kamer, Y.; Yakobson, B.A.; Dag, A. First detection in Israel of fluvalinate resistance in the varroa mite using bioassay and biochemical methods. Exp. Appl. Acarol. 2000, 24, 35-43. DOI: https://doi.org/10.1023/A:1006379114942
Rodríguez-Dehaibes, S.R.; Otero-Colina, G.; Sedas, V.P.; Jiménez, J.A.V. Resistance to amitraz and flumethrin in Varroa destructor populations from Veracruz, Mexico. J. Apic. Res. 2005, 44, 124-125. DOI: https://doi.org/10.1080/00218839.2005.11101162
Büchler, R.; Berg, S.; Le Conte, Y. Breeding for resistance to Varroa destructor in Europe. Apidologie 2010, 41, 393-408. DOI: https://doi.org/10.1051/apido/2010011
Elzen, P.J.; Westervelt, D. Detection of coumaphos resistance in Varroa destructor in Florida. Am. Bee J. 2002, 142, 291-292.
Spreafico, M.; Eördegh, F.R.; Bernardinelli, I.; Colombo, M. First detection of strains of Varroa destructor resistant to coumaphos. Results of laboratory tests and field trials. Apidologie 2001, 32, 49-55. DOI: https://doi.org/10.1051/apido:2001110
Elzen, P.J.; Baxter, J.R.; Spivak, M.; Wilson, W.T. Control of Varroa jacobsoni Oud. resistant to fluvalinate and amitraz using coumaphos. Apidologie 2000, 31, 437-441. DOI: https://doi.org/10.1051/apido:2000134
Gisder, S.; Genersch, E. Special issue: honey bee viruses. Viruses 2015, 7, 5603–5608. DOI: https://doi.org/10.3390/v7102885
Locke, B. Natural Varroa mite-surviving Apis mellifera honeybee populations. Apidologie 2016, 47, 467-482. DOI: https://doi.org/10.1007/s13592-015-0412-8
Tentcheva, D.; Gauthier, L.; Zappulla, N.; Dainat, B.; Cousserans, F.; Colin, M.E.; Bergoin, M. Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France. Appl. Environ. Microbiol. 2004, 70, 7185–7291. DOI: https://doi.org/10.1128/AEM.70.12.7185-7191.2004
Nielsen, S.L.; Nicolaisen M.; Kryger, P. Incidence of acute bee paralysis virus, black queen cell virus, chronic bee paralysis virus, deformed wing virus, Kashmir bee virus and sacbrood virus in honey bees (Apis mellifera) in Denmark. Apidologie 2008, 39, 310–314. DOI: https://doi.org/10.1051/apido:2008007
Levin, S.; Sela, N.; Chejanovsky, N. Two novel viruses associated with the Apis mellifera pathogenic mite Varroa destructor. Sci. Rep. 2016, 6, 37710. DOI: https://doi.org/10.1038/srep37710
Francis, R. M.; Nielsen, S.L.; Kryger, P Patterns of viral infection in honey bee queens. J. Gen. Virol. 2013, 94, 668–676. DOI: https://doi.org/10.1099/vir.0.047019-0
Paris, L.; El Alaoui, H.; Delbac, F.; Diogon, M. Effects of the gut parasite Nosema ceranae on honey bee physiology and behavior. Curr. Opin. Insect. Sci. 2018, 26, 149-154. DOI: https://doi.org/10.1016/j.cois.2018.02.017
Fries, I.; Feng, F.; Da Silva, A.; Slemenda, S.B.; Pieniazek, N.J. Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur. J. Protistol. 1996, 32, 356-365. DOI: https://doi.org/10.1016/S0932-4739(96)80059-9
Klee, J.; Besana, A.M.; Genersch, E.; Gisder, S.; Nanetti, A.; Tam, D.Q.; Chinh, T.X.; Puerta, F.; Ruz, J.M.; Kryger, P.; et al. Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J. Invertebr. Pathol. 2007, 96, 1-10. DOI: https://doi.org/10.1016/j.jip.2007.02.014
Paxton, R.J.; Klee, J.; Korpela, S.; Fries, I. Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis. Apidologie 2007, 38, 558-565. DOI: https://doi.org/10.1051/apido:2007037
Chen, Y.P.; Evans, J.D.; Smith, I.B.; Pettis, J.S. Nosema ceranae is a long-present and widespread microsporidean infection of the European honey bee (Apis mellifera) in the United States. J. Invertebr. Pathol. 2008, 97, 186-188. DOI: https://doi.org/10.1016/j.jip.2007.07.010
Invernizzi, C.; Abud, C.; Tomasco, I.H.; Harriet, J.; Ramallo, G.; Campa, J.; Katz, H.; Gardiol, G.; Mendoza, Y. Presence of Nosema ceranae in honeybees (Apis mellifera) in Uruguay. J. Invertebr. Pathol. 2009, 101, 150-153. DOI: https://doi.org/10.1016/j.jip.2009.03.006
Stevanovic, J.; Stanimirovic, Z.; Genersch, E.; Kovacevic, S.R.; Ljubenkovic, J.; Radakovic, M.; Aleksic, N. Dominance of Nosema ceranae in honey bees in the Balkan countries in the absence of symptoms of colony collapse disorder. Apidologie 2011, 42, 49-58. DOI: https://doi.org/10.1051/apido/2010034
Papini, R.; Mancianti, F.; Canovai, R.; Cosci, F.; Rocchigiani, G.; Benelli, G.; Canale, A. Prevalence of the microsporidian Nosema ceranae in honeybee (Apis mellifera) apiaries in Central Italy. Saudi J. Biol. Sci. 2017, 24, 979–982. DOI: https://doi.org/10.1016/j.sjbs.2017.01.010
Botías, C.; Martín-Hernández, R.; Barrios, L.; Meana, A.; Higes, M. Nosema spp. infection and its negative effects on honey bees (Apis mellifera iberiensis) at the colony level. Vet. Res. 2013, 44, 25. DOI: https://doi.org/10.1186/1297-9716-44-25
Vejsnaes, F.; Neilsen, S.L.; Kryger, P. Factors involved in the recent increase in colony losses in Denmark. J. Apic. Res. 2010, 49, 109-110. DOI: https://doi.org/10.3896/IBRA.1.49.1.20
Higes, M.; Martín-Hernandez, R.; Garrido-Bailon, E.; Gonzalez-Porto, A.V.; García-Palencia, P.; Meana, A.; Del Nozal, M.J.; Mayo, R.; Bernal, J.L. Honey bee colony collapse due to Nosema ceranae in professional apiaries. Environ. Microbiol. Rep. 2009, 1, 110-113. DOI: https://doi.org/10.1111/j.1758-2229.2009.00014.x
Higes, M.; Nozal, M.J.; Alvaro, A.; Barrios, L.; Meana, A.; Martín-Hernández, R.; Bernal, J.L.; Bernal, J. The stability and effectiveness of fumagillin in controlling Nosema ceranae (Microsporidia) infection in honey bees (Apis mellifera) under laboratory and field conditions. Apidologie 2011, 42, 364–377. DOI: https://doi.org/10.1007/s13592-011-0003-2
Pajuelo, A.G.; Torres, C.; Bermejo F.J.O. Colony losses: a double blind trial on the influence of supplementary protein nutrition and preventative treatment with fumagillin against Nosema ceranae. J. Apic. Res. 2008, 47, 84–86. DOI: https://doi.org/10.1080/00218839.2008.11101429
Huang, W.F.; Solter, L.F.; Yau, P.M.; Imai, B.S. Nosema ceranae escapes fumagillin control in honey bees. PLoS Pathog. 2013, 9, e1003185. DOI: https://doi.org/10.1371/journal.ppat.1003185
van den Heever, J.P.; Thompson, T.S.;, Curtis, J.M.; Pernal, S.F. Stability of dicyclohexylamine and fumagillin in honey. Food Chem. 2015, 179, 152–158. DOI: https://doi.org/10.1016/j.foodchem.2015.01.111
Toplak, I.; Jamnikar Ciglenečki, U.; Aronstein, K.; Gregorc, A. Chronic bee paralysis virus and Nosema ceranae experimental co-infection of winter honey bee workers (Apis mellifera L.). Viruses 2013, 5, 2282–2297 DOI: https://doi.org/10.3390/v5092282
Costa, C.; Tanner, G.; Lodesani, M.; Maistrello, L.; Neumann, P. Negative correlation between Nosema ceranae spore loads and deformed wing virus infection levels in adult honey bee workers. J. Invertebr. Pathol. 2011, 108, 224–225 DOI: https://doi.org/10.1016/j.jip.2011.08.012
Bahreini, R.; Currie, R.W. The influence of Nosema (Microspora: Nosematidae) infection on honey bee (Hymenoptera: Apidae) defense against Varroa destructor (Mesostigmata: Varroidae). J. Invertebr. Pathol. 2015, 132, 57–65. DOI: https://doi.org/10.1016/j.jip.2015.07.019
Rubanov, A.; Russell, K.A.; Rothman, J.A.; Nieh, J.C.; McFrederick, Q.S. Intensity of Nosema ceranae infection is associated with specific honey bee gut bacteria and weakly associated with gut microbiome structure. Sci. Rep. 2019, 9, 3820. DOI: https://doi.org/10.1038/s41598-019-40347-6
Fewell, J.H.; Winston, M.L. Colony state and regulation of pollen foraging in the honey bee, Apis mellifera L. Behav. Ecol. Sociobiol. 1992, 30, 387–393. DOI: https://doi.org/10.1007/BF00176173
Oldroyd, B.P. What’s killing American honey bees? PLoS Biol. 2007, 5, e168. DOI: https://doi.org/10.1371/journal.pbio.0050168
Groh, C.; Tautz, J.; Rössler, W. Synaptic organization in the adult honey bee brain is influenced by brood-temperature control during pupal development. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 4268–4273. DOI: https://doi.org/10.1073/pnas.0400773101
Jones, J.C.; Helliwell, P.; Beekman, M.; Maleszka, R.; Oldroyd, B.P. The effects of rearing temperature on developmental stability and learning and memory in the honey bee, Apis mellifera. J. Comp. Physiol. A. Neuroethol. Sens. Neural. Behav. Physiol. 2005, 191, 1121–1129. DOI: https://doi.org/10.1007/s00359-005-0035-z
Nürnberger, F.; Härtel, S.; Steffan-Dewenter, I. The influence of temperature and photoperiod on the timing of brood onset in hibernating honey bee colonies. PeerJ 2018, 6, e4801. DOI: https://doi.org/10.7717/peerj.4801
Wang, Q.; Xu, X.; Zhu, X.; Chen, L.; Zhou, S.; Huang, Z.Y.; Zhou, B. Low-Temperature Stress during Capped Brood Stage Increases Pupal Mortality, Misorientation and Adult Mortality in Honey Bees. PloS One 2016, 11, e0154547. DOI: https://doi.org/10.1371/journal.pone.0154547
VanEngelsdorp, D.; Speybroeck, N.; Evans, J.D.; Kim Nguyen, B.; Mullin, C.; Frazier, M.; Frazier, J.; Cox-Foster, D.; Chen, Y,; Tarpy, D.R.; et al. Weighing risk factors associated with bee colony collapse disorder by classification and regression tree analysis. J. Econ. Entomol. 2010, 103, 1517-1523. DOI: https://doi.org/10.1603/EC09429
Memmott, J.; Craze, P.G.; Waser, N.M.; Price, M.V. Global warming and the disruption of plant-pollinator interactions. Ecol. Lett. 2007, 10, 710-717. DOI: https://doi.org/10.1111/j.1461-0248.2007.01061.x
Thomson, J.D. Flowering phenology, fruiting success and progressive deterioration of pollination in an early-flowering geophyte. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 3187-3199. DOI: https://doi.org/10.1098/rstb.2010.0115
Goulson, D.; Lye, G.C.; Darvill, B. Decline and conservation of bumble bees. Annu. Rev. Entomol. 2008, 53, 191–208. DOI: https://doi.org/10.1146/annurev.ento.53.103106.093454
Brown, M.J.F.; Paxton, R.J. The conservation of bees: A global perspective. Apidologie 2009, 40, 410–416. DOI: https://doi.org/10.1051/apido/2009019
Goulson, D.; Nicholls, E.; Botías, C.; Rotheray, E.L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 2015, 347, 1255957. DOI: https://doi.org/10.1126/science.1255957
Kovács-Hostyánszki, A.; Földesi, R.; Mózes, E.; Szirák, Á.; Fischer, J.; Hanspach, J.; Báldi, A. Conservation of Pollinators in Traditional Agricultural Landscapes - New Challenges in Transylvania (Romania) Posed by EU Accession and Recommendations for Future Research. PloS ONE 2016, 11, e0151650. DOI: https://doi.org/10.1371/journal.pone.0151650
Belsky, J.; Joshi, N.K. Impact of Biotic and Abiotic Stressors on Managed and Feral Bees. Insects 2019, 10, 233. DOI: https://doi.org/10.3390/insects10080233
Patrício-Roberto, G.B.; Campos, M.J.O. Aspects of Landscape and Pollinators—What is Important to Bee Conservation? Diversity 2014, 6, 158-175. DOI: https://doi.org/10.3390/d6010158
Rollin, O.; Benelli, G.; Benvenuti, S.; Decourtye, A.; Wratten, S.D.; Canale, A.; Desneux, N. Weed-insect pollinator networks as bio-indicators of ecological sustainability in agriculture. A review. Agron. Sustain. Dev. 2016, 36, 8. DOI: https://doi.org/10.1007/s13593-015-0342-x
Sponsler, D.B.; Grozinger, C.M.; Hitaj, C.; Rundlöf, M.; Botías, C.; Code, A.; Lonsdorf, E.V.; Melathopoulos, A.P.; Smith, D.J.; Suryanarayanan, S.; et al. Pesticides and pollinators: A socioecological synthesis. Sci. Total. Environ. 2019, 662, 1012–1027. DOI: https://doi.org/10.1016/j.scitotenv.2019.01.016
Földesi, R.; Kovács‐Hostyánszki, A.; Kőrösi, Á.; Somay, L.; Elek, Z.; Markó, V.; Sárospataki, M.; Bakos, R.; Varga, Á.; Nyisztor, K.; et al. Relationships between wild bees, hoverflies and pollination success in apple orchards with different landscape contexts. Agr. Forest. Entomol. 2016, 18, 68-75. DOI: https://doi.org/10.1111/afe.12135
Lee, H.; Sumner, D.A.; Champetier, A. Pollination Markets and the Coupled Futures of Almonds and Honey Bees: Simulating Impacts of Shifts in Demands and Costs. Am. J. Agric. Econ. 2019, 101, 230–249. DOI: https://doi.org/10.1093/ajae/aay063
Potts, S.; Biesmeijer, J.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W. Global pollinator declines: trends impacts and drivers. Trends Ecol. Evol. 2010, 256, 345–353. DOI: https://doi.org/10.1016/j.tree.2010.01.007
vanEngelsdorp, D.; Evans, J.D.; Donovall, L.; Mullin, C.; Frazier, M.; Frazier, J.; Tarpy, D.R.; Hayes, J.; Pettis, J.S. Entombed pollen: a new condition in honey bee colonies associated with increased risk of colony mortality. J. Invertebr. Pathol. 2009, 101, 147–149. DOI: https://doi.org/10.1016/j.jip.2009.03.008
London-Shafir, I.; Shafir, S.; Eisikowitch, D. Amygdalin in almond nectar and pollen-facts and possible roles. Plant Syst. Evol. 2003, 238, 87–95. DOI: https://doi.org/10.1007/s00606-003-0272-y
United Nations Environment Programme (UNEP). UNEP Emerging Issues: Global Honey Bee Colony Disorder and Other Threats to Insect Pollinators 2010, p. 16 .http://www.unep.org/dewa/Portals/67/pdf/Global_Bee_Colony_Disorder_and_Threats_insect_pollinators.pdf.
Tilman, D.; Fargione, J.; Wolff, B.; D'Antonio, C.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W.H.; Simberloff, D,; Swackhamer D. Forecasting Agriculturally Driven Global Environmental Change. Science 2001, 292, 281–284. DOI: https://doi.org/10.1126/science.1057544
Drinkwater, L.E.; Wagoner, P.; Sarrantonio, M. Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 1998, 396, 262–265. DOI: https://doi.org/10.1038/24376
Havlin, J.L.; Beaton, J.D.; Tisdale, S.L.; Nelson, W.L. Soil Fertility and Fertilizers: An Introduction to Nutrient Management. Saddle River 1999, NJ: Prentice–Hall.
Fox, J. E., Gulledge, J., Engelhaupt, E., Burow, M. E., & McLachlan, J. A. (2007). Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10282–10287. DOI: https://doi.org/10.1073/pnas.0611710104
Schierow, L-J.; Johnson, R.; Corn, M.L. Bee health: the role of pesticides, Congressional Research Service (CRS) 2012, Reports for Congress, pp. 26. https://www.fas.org/sgp/crs/misc/R42855.pdf
Capri, E.; Marchis, A. Bee Health in Europe: Facts and Figures 2013. Compendium of the latest information on bee health in Europe. OPERA Research Centre, Università Cattolica del Sacro Cuore , pp. 64.
Johnson, R.; Corn, M.L. Bee Health: The Role of Pesticides. Congressional Research Service (CRS) 2015. Reports for Congress, pp. 47. http://fas.org/sgp/crs/misc/R43900.pdf.
USDA-Biotech Crop Data. Adoption of genetically engineered crops in the U.S. 2009. http://www.ers.usda.gov/Data/BiotechCrops/#2009-7-1.
Johnson, R.M.; Ellis, M.D.; Mullin, C.A.; Frazier, M. Pesticides and honey bee toxicity—USA. Apidologie 2010, 41, 312–331. DOI: https://doi.org/10.1051/apido/2010018
Johnson, R.M. Honey Bee Toxicology. Annu. Rev. Entomol. 2015, 60, 415–434. DOI: https://doi.org/10.1146/annurev-ento-011613-162005
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Peter Hristov, Rositsa Shumkova, Nadezhda Palova, Boyko Neov

This work is licensed under a Creative Commons Attribution 4.0 International License.
Sociobiology is a diamond open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).