Honey bee colony losses: Why are honey bees disappearing?

Authors

  • Peter Hristov Bulgarian Academy of Sciences
  • Rositsa Shumkova Smolyan Agricultural Academy
  • Nadezhda Palova Scientific Center of Agriculture, Sredets, Agricultural Academy
  • Boyko Neov Bulgarian Academy of Sciences

DOI:

https://doi.org/10.13102/sociobiology.v68i1.5851

Keywords:

honey bee losses, colony collapse disorder, Varroa destructor, viral diseases, nosematosis, negative pressures

Abstract

The Western honey bee (Apis mellifera L., Hymenoptera: Apidae) is a species of crucial economic, agricultural and environmental importance.

In the last ten years, some regions of the world have suffered from a significant reduction of honey bee colonies. In fact, honey bee losses are not an unusual phenomenon, but in many countries worldwide there has been a notable decrease in honey bee families. The cases in the USA, in many European countries, and in the Middle East have received considerable attention, mostly due to the absence of an easily identifiable cause.

It has been difficult to determine the main factors leading to colony losses because of honey bees’ diverse social behavior. Moreover, in their daily routine, they make contact with many agents of the environment and are exposed to a plethora of human activities and their consequences. Nevertheless, a number of different factors are considered to be contributing to honey bee losses, and recent investigations have established some of the most important ones, in particular, pests and diseases, bee management, including bee keeping practices and breeding, the change in climatic conditions, agricultural practices, and the use of pesticides. The global picture highlights the ectoparasitic mite Varroa destructor as a major factor in colony loss. Last but not least, microsporidian parasites, mainly Nosema ceranae, also contribute to the problem.

Thus, it is obvious that many factors are involved in honey bee colony losses globally. Increased monitoring and scientific research should throw new light on the factors involved in recent honey bee colony losses.

This review focuses on the main factors which have been found to have an impact on the increase in honey bee colony losses.

Downloads

Download data is not yet available.

References

Neumann, P.; Carreck, N.L. Honey bee colony losses. J. Apic. Res. 2010, 49, 1–6. DOI: https://doi.org/10.3896/IBRA.1.49.1.01

Taniguchi, T.; Kita, Y.; Matsumoto, T.; Kimura, K. Honeybee Colony Losses during 2008~2010 Caused by Pesticide Application in Japan. J. Apic. 2012, 27, 15-27.

Liu, Z.; Chen, C.; Niu, Q.; Qi, W.; Yuan, C.; Su, S.; Liu, S.; Zhang, Y.; Zhang, X.; Ji, T.; et al. Survey results of honey bee (Apis mellifera) colony losses in China (2010–2013). J. Apic. Res. 2016, 55, 29-37. DOI: https://doi.org/10.1080/00218839.2016.1193375

Al-Ghamdi, A.; Adgaba, N.; Getachew, A.; Tadesse, Y. New approach for determination of an optimum honeybee colony’s carrying capacity based on productivity and nectar secretion potential of bee forage species. Saudi J. Biol. Sci. 2016, 23, 92-100. DOI: https://doi.org/10.1016/j.sjbs.2014.09.020

FAO. FAOSTAT Database. Food and Agriculture Organization of the United Nations 2009. Retrieved from http://www.fao.org/faostat/en/#home.

Potts, S.G.; Roberts, S.P.; Dean, R.; Marris, G.; Brown, M.A.; Jones, R.; Neumann, P.; Settele, J. Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 2010, 49, 15-22. DOI: https://doi.org/10.3896/IBRA.1.49.1.02

Sammataro, D.; Gerson, U.; Needham, G. Parasitic mites of honey bees: life history, implications, and impact. Annu. Rev. Entomol. 2000, 45, 519-548. DOI: https://doi.org/10.1146/annurev.ento.45.1.519

Dhooria, M.S. Parasitic Mites on Honeybees. In: Fundamentals of Applied Acarology. Springer, Singapore, 2016. DOI: https://doi.org/10.1007/978-981-10-1594-6

Shen, M.; Cui, L.; Ostiguy, N.; Cox-Foster, D. Intricate transmission routes and interactions between picorna-like viruses (Kashmir bee virus and sacbrood virus) with the honeybee host and the parasitic varroa mite. J. Gen. Virol. 2005, 86, 2281–2289. DOI: https://doi.org/10.1099/vir.0.80824-0

Iwasaki, J.M.; Barratt, B.I.; Lord, J.M.; Mercer, A.R.; Dickinson, K.J. The New Zealand experience of varroa invasion highlights research opportunities for Australia. Ambio 2015, 44, 694–704. DOI: https://doi.org/10.1007/s13280-015-0679-z

Medina Flores, C.A.; Guzmán Novoa, E.; Hamiduzzaman, M.; Aréchiga Flores, C.F.; López Carlos, M.A. Africanized honey bees (Apis mellifera) have low infestation levels of the mite Varroa destructor in different ecological regions in Mexico. Genet. Mol. Res. 2014, 13, 7282-7293. DOI: https://doi.org/10.4238/2014.February.21.10

Oddie, M.; Büchler, R.; Dahle, B.; Kovacic, M.; Le Conte, Y.; Locke, B.; de Miranda, J.R.; Mondet, F.; Neumann, P. Rapid parallel evolution overcomes global honey bee parasite. Sci. Rep. 2018, 8, 7704. DOI: https://doi.org/10.1038/s41598-018-26001-7

Ramsey, S.D.; Ochoa, R.; Bauchan, G.; Gulbronson, C.; Mowery, J.D.; Cohen, A.; Lim, D.; Joklik, J.; Cicero, J.M.; Ellis, J.D.; et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. PNAS 2019, 116, 1792-1801. DOI: https://doi.org/10.1073/pnas.1818371116

Rinkevich, F.D.; Danka, R.G.; Healy, K.B. Influence of Varroa Mite (Varroa destructor) Management Practices on Insecticide Sensitivity in the Honey Bee (Apis mellifera). Insects 2017, 8, 9. DOI: https://doi.org/10.3390/insects8010009

Peck, D.T.; Smith, M.L.; Seeley, T.D. Varroa destructor Mites Can Nimbly Climb from Flowers onto Foraging Honey Bees. PloS One 2016, 11, e0167798. DOI: https://doi.org/10.1371/journal.pone.0167798

Oddie, M.; Dahle, B.; Neumann, P. Norwegian honey bees surviving Varroa destructor mite infestations by means of natural selection. PeerJ 2017, 5, e3956. DOI: https://doi.org/10.7717/peerj.3956

Floris, I.; Cabras, P.; Garau, V.L.; Minelli, E.V.; Satta, A.; Troullier, J. Persistence and effectiveness of pyrethroids in plastic strips against Varroa jacobsoni (Acari: Varroidae) and mite resistance in a Mediterranean area. J. Econ. Entomol. 2001, 94, 806-810. DOI: https://doi.org/10.1603/0022-0493-94.4.806

Macedo, P.A.; Wu, J.; Ellis, M.D. Using inert dusts to detect and assess varroa infestations in honey bee colonies. J. Apic. Res. 2002, 41, 3-7. DOI: https://doi.org/10.1080/00218839.2002.11101062

Mozes-Koch, R.; Slabezki, Y.; Efrat, H.; Kalev, H.; Kamer, Y.; Yakobson, B.A.; Dag, A. First detection in Israel of fluvalinate resistance in the varroa mite using bioassay and biochemical methods. Exp. Appl. Acarol. 2000, 24, 35-43. DOI: https://doi.org/10.1023/A:1006379114942

Rodríguez-Dehaibes, S.R.; Otero-Colina, G.; Sedas, V.P.; Jiménez, J.A.V. Resistance to amitraz and flumethrin in Varroa destructor populations from Veracruz, Mexico. J. Apic. Res. 2005, 44, 124-125. DOI: https://doi.org/10.1080/00218839.2005.11101162

Büchler, R.; Berg, S.; Le Conte, Y. Breeding for resistance to Varroa destructor in Europe. Apidologie 2010, 41, 393-408. DOI: https://doi.org/10.1051/apido/2010011

Elzen, P.J.; Westervelt, D. Detection of coumaphos resistance in Varroa destructor in Florida. Am. Bee J. 2002, 142, 291-292.

Spreafico, M.; Eördegh, F.R.; Bernardinelli, I.; Colombo, M. First detection of strains of Varroa destructor resistant to coumaphos. Results of laboratory tests and field trials. Apidologie 2001, 32, 49-55. DOI: https://doi.org/10.1051/apido:2001110

Elzen, P.J.; Baxter, J.R.; Spivak, M.; Wilson, W.T. Control of Varroa jacobsoni Oud. resistant to fluvalinate and amitraz using coumaphos. Apidologie 2000, 31, 437-441. DOI: https://doi.org/10.1051/apido:2000134

Gisder, S.; Genersch, E. Special issue: honey bee viruses. Viruses 2015, 7, 5603–5608. DOI: https://doi.org/10.3390/v7102885

Locke, B. Natural Varroa mite-surviving Apis mellifera honeybee populations. Apidologie 2016, 47, 467-482. DOI: https://doi.org/10.1007/s13592-015-0412-8

Tentcheva, D.; Gauthier, L.; Zappulla, N.; Dainat, B.; Cousserans, F.; Colin, M.E.; Bergoin, M. Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France. Appl. Environ. Microbiol. 2004, 70, 7185–7291. DOI: https://doi.org/10.1128/AEM.70.12.7185-7191.2004

Nielsen, S.L.; Nicolaisen M.; Kryger, P. Incidence of acute bee paralysis virus, black queen cell virus, chronic bee paralysis virus, deformed wing virus, Kashmir bee virus and sacbrood virus in honey bees (Apis mellifera) in Denmark. Apidologie 2008, 39, 310–314. DOI: https://doi.org/10.1051/apido:2008007

Levin, S.; Sela, N.; Chejanovsky, N. Two novel viruses associated with the Apis mellifera pathogenic mite Varroa destructor. Sci. Rep. 2016, 6, 37710. DOI: https://doi.org/10.1038/srep37710

Francis, R. M.; Nielsen, S.L.; Kryger, P Patterns of viral infection in honey bee queens. J. Gen. Virol. 2013, 94, 668–676. DOI: https://doi.org/10.1099/vir.0.047019-0

Paris, L.; El Alaoui, H.; Delbac, F.; Diogon, M. Effects of the gut parasite Nosema ceranae on honey bee physiology and behavior. Curr. Opin. Insect. Sci. 2018, 26, 149-154. DOI: https://doi.org/10.1016/j.cois.2018.02.017

Fries, I.; Feng, F.; Da Silva, A.; Slemenda, S.B.; Pieniazek, N.J. Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur. J. Protistol. 1996, 32, 356-365. DOI: https://doi.org/10.1016/S0932-4739(96)80059-9

Klee, J.; Besana, A.M.; Genersch, E.; Gisder, S.; Nanetti, A.; Tam, D.Q.; Chinh, T.X.; Puerta, F.; Ruz, J.M.; Kryger, P.; et al. Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J. Invertebr. Pathol. 2007, 96, 1-10. DOI: https://doi.org/10.1016/j.jip.2007.02.014

Paxton, R.J.; Klee, J.; Korpela, S.; Fries, I. Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis. Apidologie 2007, 38, 558-565. DOI: https://doi.org/10.1051/apido:2007037

Chen, Y.P.; Evans, J.D.; Smith, I.B.; Pettis, J.S. Nosema ceranae is a long-present and widespread microsporidean infection of the European honey bee (Apis mellifera) in the United States. J. Invertebr. Pathol. 2008, 97, 186-188. DOI: https://doi.org/10.1016/j.jip.2007.07.010

Invernizzi, C.; Abud, C.; Tomasco, I.H.; Harriet, J.; Ramallo, G.; Campa, J.; Katz, H.; Gardiol, G.; Mendoza, Y. Presence of Nosema ceranae in honeybees (Apis mellifera) in Uruguay. J. Invertebr. Pathol. 2009, 101, 150-153. DOI: https://doi.org/10.1016/j.jip.2009.03.006

Stevanovic, J.; Stanimirovic, Z.; Genersch, E.; Kovacevic, S.R.; Ljubenkovic, J.; Radakovic, M.; Aleksic, N. Dominance of Nosema ceranae in honey bees in the Balkan countries in the absence of symptoms of colony collapse disorder. Apidologie 2011, 42, 49-58. DOI: https://doi.org/10.1051/apido/2010034

Papini, R.; Mancianti, F.; Canovai, R.; Cosci, F.; Rocchigiani, G.; Benelli, G.; Canale, A. Prevalence of the microsporidian Nosema ceranae in honeybee (Apis mellifera) apiaries in Central Italy. Saudi J. Biol. Sci. 2017, 24, 979–982. DOI: https://doi.org/10.1016/j.sjbs.2017.01.010

Botías, C.; Martín-Hernández, R.; Barrios, L.; Meana, A.; Higes, M. Nosema spp. infection and its negative effects on honey bees (Apis mellifera iberiensis) at the colony level. Vet. Res. 2013, 44, 25. DOI: https://doi.org/10.1186/1297-9716-44-25

Vejsnaes, F.; Neilsen, S.L.; Kryger, P. Factors involved in the recent increase in colony losses in Denmark. J. Apic. Res. 2010, 49, 109-110. DOI: https://doi.org/10.3896/IBRA.1.49.1.20

Higes, M.; Martín-Hernandez, R.; Garrido-Bailon, E.; Gonzalez-Porto, A.V.; García-Palencia, P.; Meana, A.; Del Nozal, M.J.; Mayo, R.; Bernal, J.L. Honey bee colony collapse due to Nosema ceranae in professional apiaries. Environ. Microbiol. Rep. 2009, 1, 110-113. DOI: https://doi.org/10.1111/j.1758-2229.2009.00014.x

Higes, M.; Nozal, M.J.; Alvaro, A.; Barrios, L.; Meana, A.; Martín-Hernández, R.; Bernal, J.L.; Bernal, J. The stability and effectiveness of fumagillin in controlling Nosema ceranae (Microsporidia) infection in honey bees (Apis mellifera) under laboratory and field conditions. Apidologie 2011, 42, 364–377. DOI: https://doi.org/10.1007/s13592-011-0003-2

Pajuelo, A.G.; Torres, C.; Bermejo F.J.O. Colony losses: a double blind trial on the influence of supplementary protein nutrition and preventative treatment with fumagillin against Nosema ceranae. J. Apic. Res. 2008, 47, 84–86. DOI: https://doi.org/10.1080/00218839.2008.11101429

Huang, W.F.; Solter, L.F.; Yau, P.M.; Imai, B.S. Nosema ceranae escapes fumagillin control in honey bees. PLoS Pathog. 2013, 9, e1003185. DOI: https://doi.org/10.1371/journal.ppat.1003185

van den Heever, J.P.; Thompson, T.S.;, Curtis, J.M.; Pernal, S.F. Stability of dicyclohexylamine and fumagillin in honey. Food Chem. 2015, 179, 152–158. DOI: https://doi.org/10.1016/j.foodchem.2015.01.111

Toplak, I.; Jamnikar Ciglenečki, U.; Aronstein, K.; Gregorc, A. Chronic bee paralysis virus and Nosema ceranae experimental co-infection of winter honey bee workers (Apis mellifera L.). Viruses 2013, 5, 2282–2297 DOI: https://doi.org/10.3390/v5092282

Costa, C.; Tanner, G.; Lodesani, M.; Maistrello, L.; Neumann, P. Negative correlation between Nosema ceranae spore loads and deformed wing virus infection levels in adult honey bee workers. J. Invertebr. Pathol. 2011, 108, 224–225 DOI: https://doi.org/10.1016/j.jip.2011.08.012

Bahreini, R.; Currie, R.W. The influence of Nosema (Microspora: Nosematidae) infection on honey bee (Hymenoptera: Apidae) defense against Varroa destructor (Mesostigmata: Varroidae). J. Invertebr. Pathol. 2015, 132, 57–65. DOI: https://doi.org/10.1016/j.jip.2015.07.019

Rubanov, A.; Russell, K.A.; Rothman, J.A.; Nieh, J.C.; McFrederick, Q.S. Intensity of Nosema ceranae infection is associated with specific honey bee gut bacteria and weakly associated with gut microbiome structure. Sci. Rep. 2019, 9, 3820. DOI: https://doi.org/10.1038/s41598-019-40347-6

Fewell, J.H.; Winston, M.L. Colony state and regulation of pollen foraging in the honey bee, Apis mellifera L. Behav. Ecol. Sociobiol. 1992, 30, 387–393. DOI: https://doi.org/10.1007/BF00176173

Oldroyd, B.P. What’s killing American honey bees? PLoS Biol. 2007, 5, e168. DOI: https://doi.org/10.1371/journal.pbio.0050168

Groh, C.; Tautz, J.; Rössler, W. Synaptic organization in the adult honey bee brain is influenced by brood-temperature control during pupal development. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 4268–4273. DOI: https://doi.org/10.1073/pnas.0400773101

Jones, J.C.; Helliwell, P.; Beekman, M.; Maleszka, R.; Oldroyd, B.P. The effects of rearing temperature on developmental stability and learning and memory in the honey bee, Apis mellifera. J. Comp. Physiol. A. Neuroethol. Sens. Neural. Behav. Physiol. 2005, 191, 1121–1129. DOI: https://doi.org/10.1007/s00359-005-0035-z

Nürnberger, F.; Härtel, S.; Steffan-Dewenter, I. The influence of temperature and photoperiod on the timing of brood onset in hibernating honey bee colonies. PeerJ 2018, 6, e4801. DOI: https://doi.org/10.7717/peerj.4801

Wang, Q.; Xu, X.; Zhu, X.; Chen, L.; Zhou, S.; Huang, Z.Y.; Zhou, B. Low-Temperature Stress during Capped Brood Stage Increases Pupal Mortality, Misorientation and Adult Mortality in Honey Bees. PloS One 2016, 11, e0154547. DOI: https://doi.org/10.1371/journal.pone.0154547

VanEngelsdorp, D.; Speybroeck, N.; Evans, J.D.; Kim Nguyen, B.; Mullin, C.; Frazier, M.; Frazier, J.; Cox-Foster, D.; Chen, Y,; Tarpy, D.R.; et al. Weighing risk factors associated with bee colony collapse disorder by classification and regression tree analysis. J. Econ. Entomol. 2010, 103, 1517-1523. DOI: https://doi.org/10.1603/EC09429

Memmott, J.; Craze, P.G.; Waser, N.M.; Price, M.V. Global warming and the disruption of plant-pollinator interactions. Ecol. Lett. 2007, 10, 710-717. DOI: https://doi.org/10.1111/j.1461-0248.2007.01061.x

Thomson, J.D. Flowering phenology, fruiting success and progressive deterioration of pollination in an early-flowering geophyte. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 3187-3199. DOI: https://doi.org/10.1098/rstb.2010.0115

Goulson, D.; Lye, G.C.; Darvill, B. Decline and conservation of bumble bees. Annu. Rev. Entomol. 2008, 53, 191–208. DOI: https://doi.org/10.1146/annurev.ento.53.103106.093454

Brown, M.J.F.; Paxton, R.J. The conservation of bees: A global perspective. Apidologie 2009, 40, 410–416. DOI: https://doi.org/10.1051/apido/2009019

Goulson, D.; Nicholls, E.; Botías, C.; Rotheray, E.L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 2015, 347, 1255957. DOI: https://doi.org/10.1126/science.1255957

Kovács-Hostyánszki, A.; Földesi, R.; Mózes, E.; Szirák, Á.; Fischer, J.; Hanspach, J.; Báldi, A. Conservation of Pollinators in Traditional Agricultural Landscapes - New Challenges in Transylvania (Romania) Posed by EU Accession and Recommendations for Future Research. PloS ONE 2016, 11, e0151650. DOI: https://doi.org/10.1371/journal.pone.0151650

Belsky, J.; Joshi, N.K. Impact of Biotic and Abiotic Stressors on Managed and Feral Bees. Insects 2019, 10, 233. DOI: https://doi.org/10.3390/insects10080233

Patrício-Roberto, G.B.; Campos, M.J.O. Aspects of Landscape and Pollinators—What is Important to Bee Conservation? Diversity 2014, 6, 158-175. DOI: https://doi.org/10.3390/d6010158

Rollin, O.; Benelli, G.; Benvenuti, S.; Decourtye, A.; Wratten, S.D.; Canale, A.; Desneux, N. Weed-insect pollinator networks as bio-indicators of ecological sustainability in agriculture. A review. Agron. Sustain. Dev. 2016, 36, 8. DOI: https://doi.org/10.1007/s13593-015-0342-x

Sponsler, D.B.; Grozinger, C.M.; Hitaj, C.; Rundlöf, M.; Botías, C.; Code, A.; Lonsdorf, E.V.; Melathopoulos, A.P.; Smith, D.J.; Suryanarayanan, S.; et al. Pesticides and pollinators: A socioecological synthesis. Sci. Total. Environ. 2019, 662, 1012–1027. DOI: https://doi.org/10.1016/j.scitotenv.2019.01.016

Földesi, R.; Kovács‐Hostyánszki, A.; Kőrösi, Á.; Somay, L.; Elek, Z.; Markó, V.; Sárospataki, M.; Bakos, R.; Varga, Á.; Nyisztor, K.; et al. Relationships between wild bees, hoverflies and pollination success in apple orchards with different landscape contexts. Agr. Forest. Entomol. 2016, 18, 68-75. DOI: https://doi.org/10.1111/afe.12135

Lee, H.; Sumner, D.A.; Champetier, A. Pollination Markets and the Coupled Futures of Almonds and Honey Bees: Simulating Impacts of Shifts in Demands and Costs. Am. J. Agric. Econ. 2019, 101, 230–249. DOI: https://doi.org/10.1093/ajae/aay063

Potts, S.; Biesmeijer, J.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W. Global pollinator declines: trends impacts and drivers. Trends Ecol. Evol. 2010, 256, 345–353. DOI: https://doi.org/10.1016/j.tree.2010.01.007

vanEngelsdorp, D.; Evans, J.D.; Donovall, L.; Mullin, C.; Frazier, M.; Frazier, J.; Tarpy, D.R.; Hayes, J.; Pettis, J.S. Entombed pollen: a new condition in honey bee colonies associated with increased risk of colony mortality. J. Invertebr. Pathol. 2009, 101, 147–149. DOI: https://doi.org/10.1016/j.jip.2009.03.008

London-Shafir, I.; Shafir, S.; Eisikowitch, D. Amygdalin in almond nectar and pollen-facts and possible roles. Plant Syst. Evol. 2003, 238, 87–95. DOI: https://doi.org/10.1007/s00606-003-0272-y

United Nations Environment Programme (UNEP). UNEP Emerging Issues: Global Honey Bee Colony Disorder and Other Threats to Insect Pollinators 2010, p. 16 .http://www.unep.org/dewa/Portals/67/pdf/Global_Bee_Colony_Disorder_and_Threats_insect_pollinators.pdf.

Tilman, D.; Fargione, J.; Wolff, B.; D'Antonio, C.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W.H.; Simberloff, D,; Swackhamer D. Forecasting Agriculturally Driven Global Environmental Change. Science 2001, 292, 281–284. DOI: https://doi.org/10.1126/science.1057544

Drinkwater, L.E.; Wagoner, P.; Sarrantonio, M. Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 1998, 396, 262–265. DOI: https://doi.org/10.1038/24376

Havlin, J.L.; Beaton, J.D.; Tisdale, S.L.; Nelson, W.L. Soil Fertility and Fertilizers: An Introduction to Nutrient Management. Saddle River 1999, NJ: Prentice–Hall.

Fox, J. E., Gulledge, J., Engelhaupt, E., Burow, M. E., & McLachlan, J. A. (2007). Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10282–10287. DOI: https://doi.org/10.1073/pnas.0611710104

Schierow, L-J.; Johnson, R.; Corn, M.L. Bee health: the role of pesticides, Congressional Research Service (CRS) 2012, Reports for Congress, pp. 26. https://www.fas.org/sgp/crs/misc/R42855.pdf

Capri, E.; Marchis, A. Bee Health in Europe: Facts and Figures 2013. Compendium of the latest information on bee health in Europe. OPERA Research Centre, Università Cattolica del Sacro Cuore , pp. 64.

Johnson, R.; Corn, M.L. Bee Health: The Role of Pesticides. Congressional Research Service (CRS) 2015. Reports for Congress, pp. 47. http://fas.org/sgp/crs/misc/R43900.pdf.

USDA-Biotech Crop Data. Adoption of genetically engineered crops in the U.S. 2009. http://www.ers.usda.gov/Data/BiotechCrops/#2009-7-1.

Johnson, R.M.; Ellis, M.D.; Mullin, C.A.; Frazier, M. Pesticides and honey bee toxicity—USA. Apidologie 2010, 41, 312–331. DOI: https://doi.org/10.1051/apido/2010018

Johnson, R.M. Honey Bee Toxicology. Annu. Rev. Entomol. 2015, 60, 415–434. DOI: https://doi.org/10.1146/annurev-ento-011613-162005

Downloads

Published

2021-02-22

How to Cite

Hristov, P., Shumkova, R., Palova, N., & Neov, B. (2021). Honey bee colony losses: Why are honey bees disappearing?. Sociobiology, 68(1), e5851. https://doi.org/10.13102/sociobiology.v68i1.5851

Issue

Section

Review