Identification of Mesophylic Bacterial Flora in Deceased Worker Adults of Apis mellifera caucasia (Pollmann, 1889)




Honey bee, VITEK®2, MIS, 16S rDNA


Apis mellifera, widely farmed around the world, is the most economically important species within the genus Apis. While the microbiota of live honey bees have been extensively examined, bacteria found in deceased honey bees (which might indicate infection or opportunistic pathogens) is in contrast poorly studied. Therefore, we decided to investigate the mesophilic bacterial flora of dead honey bees. So, in September 2013, dead adult worker honey bees were collected from 12 different cities, most of which were in the border provinces of Turkey. We identified bacterial isolates at the species level by using different morphological, biochemical, physical and molecular methods, in conjunction with molecular phylogenetic analysis. We constructed phylogenetic trees for isolated bacteria with the MEGA 6.0 program and neighbor-joining trees were reconstructed based on 16S rDNA gene sequences. The phylogenetic trees indicated that isolates DE003, DE007, DE011, DE001, DE019 and DE016, DE029 could be new members of the genera Erwinia, Acidovorax, Hydrogenophaga and Bacillus genus, respectively. In the bioassay study results, we observed that DE019 Hydrogenophaga sp. (64.7%) and DE004 Klebsiella grimontii (73.3%) had lethal effects on the honey bees. The other mortalities ranged from 10% to 25% (p>0.05), and according to a One-Way ANOVA analysis DE004 and DE019 significantly affect the A. mellifera caucasia in adult worker honey bees. This study is the first report of Hydrogenophaga as honey bee pathogen.


Download data is not yet available.


Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265-267.

Anjum, S.I., Shah, A.H., Aurongzeb, M., Kori, J., Azim, M.K., Ansari, M.J. & Bin, L. (2018). Characterization of gut bacterial flora of Apis mellifera from north-west Pakistan. Saudi Journal of Biological Sciences, 25: 388-392. doi: 10.1016/j.sjbs.2017.05.008

Audisio, M.C. (2017). Gram-positive bacteria with probiotic potential for the Apis mellifera L. honey bee: the experience in the northwest of Argentina. Probiotics and Antimicrobial Proteins, 9: 22-31. doi: 10.1007/s12602-016-9231-0

Aramideh, S., Saferalizadeh, M.H., Pourmirza, A.A., Bari, M.R., Keshavarzi, M. & Mohseniazar, M. (2010). Characterization and pathogenic evaluation of Bacillus thuringiensis isolates from West Azerbaijan province-Iran. African Journal of Microbiology Research, 4: 1224-1229. doi: 10.5897/AJMR.9000149

Bae, S.S., Lee, J.H. & Kim, S.J. (2005). Bacillus alveayuensis sp. nov., a thermophilic bacterium isolated from deep-sea sediments of the Ayu Trough. International Journal of Systematic and Evolutionary Microbiology, 55: 1211-1215. doi: 10.1099/ijs.0.63424-0

Beesley, C.A., Vanner, C.L., Helsel, L.O., Gee, J.E. & Hoffmaster, A.R. (2010). Identification and characterization of clinical Bacillus spp. isolates phenotypically similar to Bacillus anthracis. FEMS Microbiology Letters, 313: 47-53. doi: 10.1111/j.1574-6968.2010.02120.x

Ben-Dov E., Boussiba S., Zaritsky A. (1995). Mosquito larvicidal activity of Escherichia coli with combinations of genes from Bacillus thuringiensis subsp. israelensis. Journal of. Bacteriology, 177: 2851-2857. doi: 10.1128/jb.177.10.2851-2857.1995

Boğ, E.Ş., Ertürk, Ö., & Yaman, M. (2020). Pathogenicity of aerobic bacteria isolated from honeybees (Apis mellifera) in Ordu province. Turkish Journal of Veterinary and Animal Sciences, 44: 714-719. doi: 10.3906/vet-1905-67

Chun J, Goodfellow M. (1995). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. International Journal of Systematic and Evolutionary Microbiology, 45: 240-245. doi: 10.1099/00207713-45-2-240

Contzen, M., Moore, E.R., Blümel, S., Stolz, A. & Kämpfer, P. (2000). Hydrogenophaga intermedia sp. nov., a 4-aminobenzene-sulfonate degrading organism. Systematic and Applied Microbiology, 23: 487-493. doi: 10.1016/S0723-2020(00)80022-3

Demir, E. (2005). Farklı habitatlardan Nocardia izolasyonu ve nümerik taksonomisi, mater thesis, Ondokuz Mayıs University, Samsun, pp. 37-45.

Dunlap, C.A., Kwon, S.W., Rooney, A.P. & Kim, S.J. (2015). Bacillus paralicheniformis sp. nov., isolated from fermented soybean paste. International Journal of Systematic and Evolutionary Microbiology, 65: 3487-3492. doi: 10.1099/ijsem.0.000441

Engel, P., Kwong, W.K., McFrederick, Q., Anderson, K.E., Barribeau, S.M., Chandler, J.A., Cornman, R.S., Dainat, J., Miranda J.R., Doublet, V., Emery, O., Evans, J.D., Farinelli, L., Filenniken, M.L., Granberg, F., Grasis, J.A., Gauthier, L., Hayer, J., Koch, H., Kocher, S., Martinson, V.G., Moran, N., Munoz-Torres, M., Newton, I., Paxton, R.J., Powell, E., Sadd, B.M. Schmid-Hempel, P., Schmid-Hempel, R., Song, SJ., Schwarz, R.S., vanEngelsdorp, D. & Dainat, B. (2016). The bee microbiome: impact on bee health and model for evolution and ecology of host-microbe interactions. MBio, 7: e02164-15. doi: 10.1128/mBio.02164-15

Fritze, D. (2004). Taxonomy of the genus Bacillus and related genera: the aerobic endospore-forming bacteria. Phytopathology, 94: 1245-1248. doi: 10.1094/PHYTO.2004.94.11.1245

Gyobu, Y., Miyadoh, S. (2001). Proposal to transfer Actinomadura carminata to a new subspecies of the genus Nonomuraea as Nonomuraea roseoviolacea subsp. Carminata comb. nov. International Journal of Systematic and Evolutionary Microbiology, 51: 881-889. doi: 10.1099/00207713-51-3-881

Jeyaram, K., Romi, W., Singh, T.A., Adewumi, G.A., Basanti, K., & Oguntoyinbo, F.A. (2011). Distinct differentiation of closely related species of Bacillus subtilis group with industrial importance. Journal of Microbiological Methods, 87: 161-164. doi: 10.1016/j.mimet.2011.08.011

Jiménez, G., Urdiain, M., Cifuentes, A., López-López, A., Blanch, A.R., Tamames, J., Kämpfer, P., Kolstø, A.-B., Ramón, D., Martínez, J.F., Codoner, F.M. & Rosselló-Móra, R. (2013). Description of Bacillus toyonensis sp. nov., a novel species of the Bacillus cereus group, and pairwise genome comparisons of the species of the group by means of ANI calculations. Systematic and Applied Microbiology, 36: 383-391. doi: 10.1016/j.syapm.2013.04.008

Jin, D., Kong, X., Cui, B., Jin, S., Xie, Y., Wang, X. & Deng, Y. (2018). Bacterial communities and potential waterborne pathogens within the typical urban surface waters. Scientific Reports, 8: 1-9. doi: 10.1038/s41598-018-31706-w

Jukes, T.H. & Cantor, C.R. (1969). Evolution of protein molecules. In Munro, H.N. (ed.) Mammalian Protein Metabolism, vol.3: Academic Press. pp: 21-132.

Kačániová, M., Gasper, J. & Terentjeva, M. (2020). Antagonistic effect of gut microbiota of honeybee (Apis mellifera) against causative agent of American foulbrood Paenibacillus larvae. Journal of Microbiology, Biotechnology and Food Sciences, 9: 478-481. doi: 10.15414/jmbfs.2019.9.special.478-481

Kence, A. (2006). Genetic Diversity of Honey Bees in Turkey and the Importance of its Conservation. Uludağ Bee Journal, 06: 25-32.

Khaled, J.M., Al-Mekhlafi, F.A., Mothana, R.A., Alharbi, N.S., Alzaharni, K.E., Sharafaddin, A.H., Kadaikunnan, S., Alobaidi, A.S., Bayaqoob, N.I., Govindarajan, M. & Benelli, G. (2018). Brevibacillus laterosporus isolated from the digestive tract of honeybees has high antimicrobial activity and promotes growth and productivity of honeybee’s colonies. Environmental Science and Pollution Research, 25: 10447-10455. doi: 10.1007/s11356-017-0071-6

Khan, K.A., Ansari, M.J., Al-Ghamdi, A., Nuru, A., Harakeh, S. & Iqbal, J. (2017). Investigation of gut microbial communities associated with indigenous honey bee (Apis mellifera jemenitica) from two different eco-regions of Saudi Arabia. Saudi Journal of Biological Sciences, 24: 1061-1068. doi: 10.1016/j.sjbs.2017.01.055

Khan, S., Somerville, D., Frese, M. & Nayudu, M. (2020). Environmental gut bacteria in European honey bees (Apis mellifera) from Australia and their relationship to the chalkbrood disease. Plos One, 15(8): e0238252. doi: 10.1371/journal.pone.0238252

Kireçci, E. & Aktaş, A.E. (2004). Identification by gase chromatograhy method and antibiotic susceptibilities of Staphylococcus strains. Türk Mikrobiyoloji Cemiyeti Dergisi, 34: 215-219.

Kwong, W.K. & Moran, N.A. (2016). Gut microbial communities of social bees. Nature Reviews Microbiology, 14: 374-384. doi: 10.1038/nrmicro.2016.43

Logan, N.A., Berge, O., Bishop, A.H., Busse, H.J., De Vos, P., Fritze, D., Heyndrickx, M., Kämpfer, P., Rabinovitch, L., Salkinoja-Salonen, M.S., Seldin, L. & Ventosa, A. (2009). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. International Journal of Systematic and Evolutionary Microbiology, 59: 2114-2121. doi: 10.1099/ijs.0.013649-0

Lana, U.G.P., Rodrigues, M.E.G.M., Oliveira, C.A., Sousa, S.M., Tavares, A.N.G., Marriel, I.E. & Gomes, E.A. (2020). Polyphasic characterization of Bacillus strains isolated from maize. Revista Brasileira de Milho e Sorgo, 19: e1190.

Lane, D.J. (1991). 16S/23S rRNA sequencing. In Stackebrandt, E & Goodfellow, M. (Eds.), Nucleic acid techniques in bacterial systematics (pp. 115-175). New York: John Wieley & Sons.

Luis, M., Pezzlo, M.T., Bittencourt, C. E. & Peterson, E. M. (2020). Color atlas of medical bacteriology, Bacillus (pp, 54-61). John Wiley & Sons: ASM press USA.

Lupan, I., Ianc, M.B., Kelemen, B.S., Carpa, R., Rosca-Casian, O., Chiriac, M.T. & Popescu, O. (2014). New and old microbial communities colonizing a seventeenth-century wooden church. Folia Microbiologica, 59: 45-51. doi: 10.1007/s12223-013-0265-3

Mahato, N.K., Gupta, V., Singh, P., Kumari, R., Verma, H., Tripathi, C., Rani, P., Sharma, A., Shingvi, N., Sood, U., Hira, P., Kohli, P., Nayyar, N., Puri, A., Bajaj, A., Kumar, R., Negi, V., Talwar, C., Khurana, H., Nagar, S., Sharma, M., Mishra, H., Singh, A. K., Dhingra, G., Negi, K.R., Sahakarad, M., Singh, Y. & Lal, R. (2017). Microbial taxonomy in the era of OMICS: application of DNA sequences, computational tools and techniques. Antonie van Leeuwenhoek, 110: 1357-1371. doi: 10.1007/s10482-017-0928-1

Maughan, H., & Van der Auwera, G. (2011). Bacillus taxonomy in the genomic era finds phenotypes to be essential though often misleading. Infection, Genetics and Evolution, 11: 789-797. doi: 10.1016/j.meegid.2011.02.001

Moar, W.J., Pusztzai-Carey, M., Mack, T.P. (1995). Toxicity of purified proteins and the HD-1 strain from Bacillus thuringiensis against lesser cornstalk borer (Lepidoptera: Pyralidae). Journal of Economic Entomology, 88: 606-609. doi: 10.1093/jee/88.3.606

Munson, E. & Carroll, K.C. (2017). What's in a name? New bacterial species and changes to taxonomic status from 2012 through 2015. Journal of Clinical Microbiology, 55: 24-42. doi: 10.1128/JCM.01379-16

Muyzer, G., de Waal, E.C, & Uitterlinden, A.G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59: 695-700.

Ohba, M., Wasano, N., & Mizuki, E. (2000). Bacillus thuringiensis soil populations naturally occurring in the Ryukyus, a subtropic region of Japan. Microbiological Research, 155: 17-22. doi: 10.1016/S0944-5013(00)80017-8

Owusu-Darko, R., Allam, M., Ismail, A., Ferreira, C.A., Oliveira, S.D.D. & Buys, E.M. (2020). Comparative genome analysis of Bacillus sporothermodurans with its closest phylogenetic neighbor, Bacillus oleronius, and Bacillus cereus and Bacillus subtilis groups. Microorganisms, 8: 1185. doi: 10.3390/microorganisms8081185

Palmisano, M.M., Nakamura, L.K., Duncan, K.E., Istock, C.A. & Cohan, F.M. (2001). Bacillus sonorensis sp. nov., a close relative of Bacillus licheniformis, isolated from soil in the Sonoran Desert, Arizona. International Journal of Systematic and Evolutionary Microbiology, 51: 1671-1679. doi: 10.1099/00207713-51-5-1671

Passet, V., & Brisse, S. (2018). Description of Klebsiella grimontii sp. nov. International Journal of Systematic and Evolutionary Microbiology, 68: 377-381. doi: 10.1099/ijsem.0.002517

Patino-Navarrete, R., & Sanchis, V. (2017). Evolutionary processes and environmental factors underlying the genetic diversity and lifestyles of Bacillus cereus group bacteria. Research in Microbiology, 168: 309-318. doi: 10.1016/j.resmic.2016.07.002

Pitcher, D.G., Saunders, N.A. & Owen, R.J. (1989). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Letters in Applied Microbiology, 8: 151-156. doi: 10.1111/j.1472-765X.1989.tb00262.x

Porrini, L.P., Porrini, M.P., Garrido, P.M., Principal, J., Suarez, C.J.B., Bianchi, B., Iriarte, P. J.F. & Eguaras, M.J. (2017). First identification of Nosema ceranae (Microsporidia) infecting Apis mellifera in Venezuela. Journal of Apicultural Science, 61: 149-152. doi: 10.1515/jas-2017-0010

Potts, S.G., Imperatriz-Fonseca, V., Ngo, H.T., Aizen, M.A., Biesmeijer, J.C., Breeze, T.D., Dicks, L.V., Garibaldi, R.A., Hill, R., Settele, J. & Vanbergen, A.J. (2016). Safeguarding pollinators and their values to human well-being. Nature, 540(7632): 220-229. doi: 10.1038/nature20588

Rasmussen, M. (2016). Aerococcus: an increasingly acknowledged human pathogen. Clinical Microbiology and Infection, 22: 22-27. doi: 10.1016/j.cmi.2015.09.026

Raymann, K. & Moran, N.A. (2018). The role of the gut microbiome in health and disease of adult honey bee workers. Current Opinion in Insect Science, 26: 97-104.

Rooney, A.P., Price, N.P., Ehrhardt, C., Swezey, J.L. & Bannan, J.D. (2009). Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. International Journal of Systematic and Evolutionary Microbiology, 59: 2429-2436. doi: 10.1099/ijs.0.009126-0

Selvakumar, G., Sushil, S.N., Stanley, J., Mohan, M., Deol, A., Rai, D., Ramkewal, Bhatt, J. C. & Gupta, H.S. (2011). Brevibacterium frigoritolerans a novel entomopathogen of Anomala dimidiata and Holotrichia longipennis (Scarabaeidae: Coleoptera). Biocontrol Science and Technology, 21: 821-827. doi: 10.1080/09583157.2011.586021

Sharif, F.A. & Alaeddinoğlu, N.G. (1988). A rapid and simple method for staining of the crystal protein of Bacillus thuringiensis. Journal of Industrial Microbiology, 3: 227-229. doi: 10.1007/BF01569580

Sheppard, W.S., Meixner, M.D. (2003). Apis mellifera pomonella, a new honey bee subspecies from central Asia. Apidologie, 34: 367-375. doi: 10.1051/apido:2003037

Shivaji, S., Chaturvedi, P., Begum, Z., Pindi, P.K., Manorama, R., Padmanaban, D.A., Shouche, Y.S., Pawar, S., Vaishampayan, P., Dutt, C.B.S., Datta, G.N., Manchanda, R.K., Rao, U.R., Bhargava, P. M. & Narlikar, J.V. (2009). Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere. International Journal of Systematic and Evolutionary Microbiology, 59: 2977-2986. doi: 10.1099/ijs.0.002527-0

Solorzano, C. D., Szalanski, A.L., Kence, M., McKern, J.A., Austin, J.W., & Kence, A. (2009). Phylogeography and population genetics of honey bees (Apis mellifera) from Turkey based on COI-COII sequence data. Sociobiology, 53: 237-246.

Stathers, R. (2017). The bee and the stock market. An overview of pollinator decline and its economic and corporate significance, in: Atkins, J., Atkins, B., (Eds.), The business of bees An integrated approach to bee decline and corporate responsiblity (Part II, Section 6) New York: Taylor& Francis.

Stephan, J.G., Lamei, S., Pettis, J.S., Riesbeck, K., de Miranda, J.R. & Forsgren, E. (2019). Honeybee-specific lactic acid bacterium supplements have no effect on american foulbrood-infected honeybee colonies. Applied and Environmental Microbiology, 85: e00606-19. doi: 10.1128/AEM.00606-19

Strejcek, M., Smrhova, T., Junkova, P., & Uhlik, O. (2018). Whole-cell MALDI-TOF MS versus 16S rRNA gene analysis for identification and dereplication of recurrent bacterial isolates. Frontiers in Microbiology, 9: e1294. doi: 10.3389/fmicb.2018.01294

Sung, L.L., Yang, D.I., Hung, C.C. & Ho, H.T. (2000). Evaluation of autoSCAN-W/A and the Vitek GNI+ AutoMicrobic system for identification of non-glucose-fermenting gram-negative bacilli. Journal of Clinical Microbiology, 38: 1127-1130. doi: 10.1128/JCM.38.3.1127-1130.2000

Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30: 2725-2729. doi: 10.1093/molbev/mst197

Wang, M., Zhao, W.Z., Xu, H., Wang, Z.W., & He, S.Y. (2015). Bacillus in the guts of honey bees (Apis mellifera; Hymenoptera: Apidae) mediate changes in amylase values. European Journal of Entomology, 112: 619-624.

Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., & Chun, J. (2017). Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67 (5): 1613-1617. doi: 10.1099/ijsem.0.001755

Yoshiyama, M., & Kimura, K. (2009). Bacteria in the gut of Japanese honeybee, Apis cerana japonica, and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood. Journal of Invertebrate Pathology, 102: 91-96. doi: 10.1016/j.jip.2009.07.005

Zhou, W., Niu, D., Zhang, Z., Liu, Y., Ning, M., Cao, X., Zhang, C. & Shen, H. (2016). Complete genome sequence of Aerococcus urinaeequi strain AV208. Genome Announcments, 4: e01218-16. doi: 10.1128/genomeA.01218-16




How to Cite

Çil, E., Ertürk, Ömer, & Işik, K. (2021). Identification of Mesophylic Bacterial Flora in Deceased Worker Adults of Apis mellifera caucasia (Pollmann, 1889). Sociobiology, 68(1), e5905.



Research Article - Bees