Honeybee (Apis mellifera) Maternal Effect Causes Alternation of DNA Methylation Regulating Queen Development

Authors

  • Xu Jiang He Jiangxi Agricultural University
  • Hao Wei Jiangxi Agricultural University
  • Wu Jun Jiang Jiangxi Agricultural University
  • Yi Bo Liu Jiangxi Agricultural University
  • Xiao Bo Wu Jiangxi Agricultural University
  • Zhijiang Zeng Jiangxi Agricultural University

DOI:

https://doi.org/10.13102/sociobiology.v68i1.5935

Keywords:

honeybees, maternal effect, development, caste differentiation, DNA methylation

Abstract

Queen-worker caste dimorphism is a typical trait for honeybees (Apis mellifera). We previously showed a maternal effect on caste differentiation and queen development, where queens emerged from queen-cell eggs (QE) had higher quality than queens developed from worker cell eggs (WE). In this study, newly-emerged queens were reared from QE, WE, and 2-day worker larvae (2L). The thorax size and DNA methylation levels of queens were measured. We found that queens emerging from QE had significantly larger thorax length and width than WE and 2L. Epigenetic analysis showed that QE/2L comparison had the most different methylated genes (DMGs, 612) followed by WE/2L (473), and QE/WE (371). Interestingly, a great number of DMGs (42) were in genes belonging to mTOR, MAPK, Wnt, Notch, Hedgehog, FoxO, and Hippo signaling pathways that are involved in regulating caste differentiation, reproduction and longevity. This study proved that honeybee maternal effect causes epigenetic alteration regulating caste differentiation and queen development.

Downloads

Download data is not yet available.

Author Biographies

Xu Jiang He, Jiangxi Agricultural University

Honeybee Research Institute

Hao Wei, Jiangxi Agricultural University

Honeybee Research Institute

Wu Jun Jiang, Jiangxi Agricultural University

Honeybee Research Institute

Yi Bo Liu, Jiangxi Agricultural University

Honeybee Research Institute

Xiao Bo Wu, Jiangxi Agricultural University

Honeybee Research Institute

Zhijiang Zeng, Jiangxi Agricultural University

Honeybee Research Institute

References

Amiri, E., Strand, M., Rueppell, O. & Tarpy, D. (2017). Queen quality and the impact of honey bee diseases on queen health: potential for interactions between two major threats to colony health. Insects, 8, 2: 48. doi: 10.3390/insects8020048 DOI: https://doi.org/10.3390/insects8020048

Amiri, E., Le, K., Melendez, C.V., Strand, M.K., Tarpy, D.R. & Rueppell, O. (2020). Egg-size plasticity in Apis mellifera: honey bee queens alter egg size in response to both genetic and environmental factors. Journal of Evolutionary Biology, 33: 534-543. doi: 10.1111/jeb.13589 DOI: https://doi.org/10.1111/jeb.13589

Antúnez, K., Invernizzi, C., Mendoza, Y., Vanengelsdorp, D. & Zunino, P. (2016). Honeybee colony losses in Uruguay during 2013-2014. Apidologie, 48: 1-7. doi: 10.1007/s13592- 016-0482-2 DOI: https://doi.org/10.1007/s13592-016-0482-2

Bernardo, J. (1996). Maternal Effects in Animal Ecology. Integrative and Comparative Biology, 36: 83-105. doi: 10.1093/icb/36.2.83 DOI: https://doi.org/10.1093/icb/36.2.83

Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes and Development, 16: 6-21. doi: 10.1101/gad.947102 DOI: https://doi.org/10.1101/gad.947102

Bilash, G.D., Borodacheva, V.T. & Timosinova, A.E. (1983). Quality of artificially reared queen bees. In Proceedings of the XXIXth International Congress of Apiculture. (Bucharest: Apimondia Publishing House), pp. 114-118.

Borodacheva, V.T. (1973). Weight of eggs and quality of queens and bees (in Russian). Pchelovodstvo, 93: 12-13.

Büchler, R., Andonov, S., Bienefeld, K., Costa, C., Hatjina, F., Kezic, N., Kryger, P., Spivak, M., Uzunov, A., &Wilde, J. (2013). Standard methods for rearing and selection of Apis mellifera queens. Journal of Apicultural Research, 52: 1-30. doi: 10.3896/IBRA.1.52.1.07. DOI: https://doi.org/10.3896/IBRA.1.52.1.07

Cardoso-Júnior, C.A.M., Guidugli-Lazzarini, K.R. & Hartfelder, K. (2018). DNA methylation affects the lifespan of honey bee ( Apis mellifera L.) workers-evidence for a regulatory module that involves vitellogenin expression but is independent of juvenile hormone function. Insect Biochemistry and Molecular Biology, 92: 21-29. doi: 10.1016/j.ibmb.2017.11.005 DOI: https://doi.org/10.1016/j.ibmb.2017.11.005

Chen, X., Hu, Y., Zheng, H.Q., Cao, L.F., Niu, D.F., Yu, D.L., Sun, Y.Q., Hu, S.N. & Hu, F.L. (2012). Transcriptome comparison between honey bee queen- and worker-destined larvae. Insect Biochemistry and Molecular Biology, 42: 665-673. doi: 10.1016/j.ibmb.2012.05.004 DOI: https://doi.org/10.1016/j.ibmb.2012.05.004

Chen, X., Ma, C., Chen, C., Lu, Q., Shi, W., Liu, Z.G., Wang, H.H. & Guo, H.K. (2017). Integration of lncRNA–miRNA–mRNA reveals novel insights into oviposition regulation in honey bees. Peer J, 5: e3881. doi: 10.7717/peerj.3881 DOI: https://doi.org/10.7717/peerj.3881

Cunningham, E.J.A. & Russell, A.F. (2000) Egg investment is influenced by male attractiveness in the mallard. Nature, 404: 74-77. doi: 10.1038/35003565 DOI: https://doi.org/10.1038/35003565

Delaney, D.A., Keller, J.J., Caren, J.R. & Tarpy, D.R. (2011). The physical, insemination, and reproductive quality of honey bee queens (Apis mellifera L.). Apidologie, 42: 1-13. doi: 10.1051/apido/2010027 DOI: https://doi.org/10.1051/apido/2010027

Dmitrijeva, M., Ossowski, S., Serrano, L. & Schaefer, M.H. (2018). Tissue-specific DNA methylation loss during ageing and carcinogenesis is linked to chromosome structure, replication timing and cell division rates. Nucleic Acids Research, 46: 7022-7039. doi: 10.1093/nar/gky498 DOI: https://doi.org/10.1093/nar/gky498

Doolittle, G.M. (1888). Scientific queen-rearing. Am. Bee J. USA.

Dickins ,T.E. & Rahman, Q. (2012). The extended evolutionary synthesis and the role of soft inheritance in evolution. Proceedings of the Royal Society, B-Biol. Sci. 279: 2913-2921. doi: 10.1098/rspb.2012.0273 DOI: https://doi.org/10.1098/rspb.2012.0273

Dyson, C.J. & Goodisman, M.A.D. (2020). Gene duplication in the honeybee: patterns of DNA methylation, gene expression, and genomic environment. Molecular Biology and Evolution, 37: 2322-2331. doi: 10.1093/molbev/msaa088 DOI: https://doi.org/10.1093/molbev/msaa088

Elango, N., Hunt, B.G., Goodisman, M.A.D. & Yi, S.V. (2009). DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. Proceedings of the National Academy of Sciences, USA. 106: 11206-11211. doi: 10.1073/pnas.0900301106 DOI: https://doi.org/10.1073/pnas.0900301106

Foret, S., Kucharski, R., Pellegrini, M., Feng, S., Jacobsen, S.E., Robinson, G.E. & Maleszka, R. (2012). DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proceedings of the National Academy of Sciences, USA. 109: 4968-4973. doi: 10.1073/pnas.1202392109 DOI: https://doi.org/10.1073/pnas.1202392109

Galloway, L.F., Etterson, J.R. & Mcglothlin, J.W. (2009). Contribution of direct and maternal genetic effects to life-history evolution. New Phytologist, 183: 826-838. doi: 10.11 11/j.1469-8137.2009.02939.x DOI: https://doi.org/10.1111/j.1469-8137.2009.02939.x

Gilley, D.C., Tarpy, D.R. & Land, B.B. (2003). Effect of queen quality on interactions between workers and dueling queens in honeybee (Apis mellifera L.) colonies. Behavioral Ecology and Sociobiology, 55: 190-196. doi: 10.1007/s00265-003-0708-y DOI: https://doi.org/10.1007/s00265-003-0708-y

Haydak, M.H. (1970). Honey bee nutrition. Annual Review of Entomology, 15: 143-156. doi: 10.1146/annurev.en.15.010170. 001043 DOI: https://doi.org/10.1146/annurev.en.15.010170.001043

He, X.J., Zhou, L.B., Pan, Q.Z., Barron, A.B., Yan, W.Y. & Zeng, Z.J. (2017). Making a queen: an epigenetic analysis of the robustness of the honey bee (Apis mellifera) queen developmental pathway. Molecular Ecology, 26: 1598-1607. doi: 10.1111/mec.13990 DOI: https://doi.org/10.1111/mec.13990

Huang, W.C. & Zhi, C.Y. (1985). The relationship between the weight of the queen honeybee at various stages and the number of ovarioles eggs laid and sealed brood produced (in Japanese). Honey Bee Science, 6: 113-116.

Hunt, B.G., Glastad, K.M., Yi, S.V. & Goodisman, M.A.D. (2013). Patterning and regulatory associations of DNA methylation are mirrored by histone modifications in insects. Genome Biology and Evolution, 5: 591-598. doi: 10.1093/gbe/evt030 DOI: https://doi.org/10.1093/gbe/evt030

Klironomos, F.D., Berg, J. & Collins, S. (2013). How epigenetic mutations can affect genetic evolution: Model and mechanism. Bioessays, 35: 571-578. doi: 10.1002/bies.201200169 DOI: https://doi.org/10.1002/bies.201200169

Krueger, F. & Andrews, S.R. (2011). Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics, 27: 1571-1572. doi: 10.1093/bioinformatics/btr167 DOI: https://doi.org/10.1093/bioinformatics/btr167

Kucharski, R., Maleszka, J., Foret, S. & Maleszka, R. (2008). Nutritional control of reproductive status in honeybees via DNA methylation. Science, 319: 1827-1830. doi: 10.1126/science.1153069 DOI: https://doi.org/10.1126/science.1153069

Li-Byarlay, H., Li, Y., Stroud, H., Feng, S. & Robinson, G.E. (2013). RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee. Proceedings of the National Academy of Sciences, USA. 110: 12750-12755. doi: 10.1073/pnas.1310735110 DOI: https://doi.org/10.1073/pnas.1310735110

Li, H. & Zhang, S. (2017). Functions of vitellogenin in eggs. In Oocytes; Springer: Cham, Switzerland, pp. 389–401. doi: 10.1007/978-3-319-60855-6_17 DOI: https://doi.org/10.1007/978-3-319-60855-6_17

Langmead, B. & Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9: 357-359. doi: 10.1038/nmeth.1923 DOI: https://doi.org/10.1038/nmeth.1923

Marshall, D. & Uller, T. (2007). When is a maternal effect adaptive?. Oikos, 116: 1957-1963. doi: 10.1111/j.2007. 0030-1299.16203.x DOI: https://doi.org/10.1111/j.2007.0030-1299.16203.x

Maleszka, R. (2008). Epigenetic integration of environmental and genomic signals in honey bees: the critical interplay of nutritional, brain and reproductive networks. Epigenetics, 3: 188-192. doi: 10.4161/epi.3.4.6697 DOI: https://doi.org/10.4161/epi.3.4.6697

Michael, B., Randal, R. & Walter, T. (2009). Honey bee colony mortality in the pacific northwest (USA) winter 2007/2008, American Bee Journal, 149: 573-575. doi: 10.1111/j.1365-3113.2009.00474.x DOI: https://doi.org/10.1111/j.1365-3113.2009.00474.x

Milius, S. (2019). U.S. honeybees had the worst winter die-off in more than a decade.[online].https://www.sciencenews.org/article/us-honeybees-had-worst-winter-die-more-decade (accessed on 20 June 19).

Pan, Q.Z., Wu, X.B., Guan, C. & Zeng, Z.J. (2013). A new method of queen rearing without grafting larvae. American Bee Journal, 153: 1279-1280.

Rangel, J., Keller, J.J. & Tarpy, D.R. (2013). The effects of honey bee (Apis mellifera L.) queen reproductive potential on colony growth. Insectes Sociaux, 60: 65-73. doi: 10.1007/s00040-012-0267-1 DOI: https://doi.org/10.1007/s00040-012-0267-1

Passera, L. (1980). The laying of biased eggs by the ant Pheidole pallidula (Nyl,) (Hymenoptera, Formicidae). Insectes Sociaux, 27: 79-95. doi: 10.1007/BF02224522 DOI: https://doi.org/10.1007/BF02224522

Roach, D.A. & Wulff, R.D. (1987). Maternal effects in plants. Annual Review of Ecology, Evolution and Sistematics, 18, 1: 209-235. doi: 10.1146/annurev.es.18.110187.001233 DOI: https://doi.org/10.1146/annurev.es.18.110187.001233

Schwabl, H. & Groothuis, T.G.G. (2019). Maternal Effects on Behavior. In Choe, J. C. (ed). Encyclopedia of Animal Behavior (Second Edition). Academic Press, pp 483-494. DOI: https://doi.org/10.1016/B978-0-12-809633-8.20836-4

Shi, Y.Y., Huang, Z.Y., Zeng, Z.J., Wang, Z.L., Wu, X.B. & Yan, W.Y. (2011). Diet and cell size both affect queen-worker differentiation through DNA methylation in honey bees (Apis mellifera, Apidae). PloS One, 6: e18808. doi: 10.1371/journal.pone.0018808 DOI: https://doi.org/10.1371/journal.pone.0018808

Shi, Y.Y., Yan, W.Y., Huang, Z.Y., Wang, Z.L., Wu, X.B. & Zeng, Z.J. (2013). Genomewide analysis indicates that queen larvae have lower methylation levels in the honey bee (Apis mellifera). Naturwissenschaften, 100: 193-197. doi: 10.1007/s00114-012-1004-3 DOI: https://doi.org/10.1007/s00114-012-1004-3

Steinhauer, N., Rennich, K., Wilson, M.E., Caron, D., Lengerich, E.J., Pettis, J.S., Rose, R., Skinner, J.A., Tarpy, D.R., Wilkes, J.T. & vanEngelsdorp, D. (2014). A national survey of managed honey bee 2012–2013 annual colony losses in the USA: results from the bee informed partnership. Journal of Apicultural Research, 53: 1-18. doi: 10.3896/ibra.1.53.1.01 DOI: https://doi.org/10.3896/IBRA.1.53.1.01

Thomas, B. (1998). Bees-lecturers by Rudolf Steiner, Anthroposophic Press, pp 222.

Torres, J. (1980). A stereological analysis of developing egg chambers in the honeybee queen, Apis mellifera. Cell Tissue Research, 208: 29-33. doi: 10.1007/BF00234170 DOI: https://doi.org/10.1007/BF00234170

VanEngelsdorp, D., Hayes Jr, J., Underwood, R.M. & Pettis, J.S. (2010). A survey of honey bee colony losses in the United States, fall 2008 to spring 2009. Journal of Apicultural Research, 49: 7-14. doi: 10.3896/IBRA.1.49.1.03 DOI: https://doi.org/10.3896/IBRA.1.49.1.03

Van Dooren, T.J.M., Hoyle, R.B. & Plaistow, S.J. (2016). Maternal Effects. In Kliman,R. M. (ed) Encyclopedia of Evolutionary Biology. Academic Press, pp 446-452. DOI: https://doi.org/10.1016/B978-0-12-800049-6.00051-2

Wei, H., He, X.J., Liao, C.H., Wu, X.B., Jiang, W.J., Zhang, B., Zhou, L.B., Zhang, L.Z., Barron, A.B., Zeng, Z.J. (2019). A maternal effect on queen production in the honey bee. Current Biology, 29: 2208-2213. doi: 10.1016/j.cub.2019.05.059 DOI: https://doi.org/10.1016/j.cub.2019.05.059

Winston, M. (1991) The Biology of the Honey Bee. Harvard University Press, Cambridge, MA, USA.

Woyke, J. (1971). Correlations between the age at which honeybee brood was grafted, characteristics of the resultant queens, and results of insemination. Journal of Apicultural Research, 10: 45-55. doi: 10.1080/00218839.1971.11099669 DOI: https://doi.org/10.1080/00218839.1971.11099669

Wang, Y., Jorda, M., Jones, P.L., Maleszka, R., Ling, X., Robertson, H.M., Mizzen, C.A., Peinado, M.A. & Robinson, G.E. (2006). Functional CpG methylation system in a social insect. Science, 314: 645-647. doi: 10.1126/science.1135213 DOI: https://doi.org/10.1126/science.1135213

Yutaka, S., Junko, T. & Toutai, M. (2014). Bisulfighter: accurate detection of methylated cytosines and differentially methylated regions. Nucleic Acids Research, 42: e45. doi: 10.1093/nar/gkt1373 DOI: https://doi.org/10.1093/nar/gkt1373

Downloads

Published

2021-03-30

How to Cite

He, X. J., Wei, H., Jiang, W. J., Liu, Y. B., Wu, X. B., & Zeng, Z. (2021). Honeybee (Apis mellifera) Maternal Effect Causes Alternation of DNA Methylation Regulating Queen Development. Sociobiology, 68(1), e5935. https://doi.org/10.13102/sociobiology.v68i1.5935

Issue

Section

Research Article - Bees