Topological structure of plant-bee networks in four Mexican environments

Authors

  • Vania A. Ramírez-Flores Instituto de Neuroetologia, Universidad Veracruzana
  • Rogel Villanueva-Gutiérrez 2Colegio de la Frontera Sur, ECOSUR-Unidad Chetumal
  • David W. Roubik Smithsonian Institution
  • Carlos H. Vergara Departamento de Ciencias Químicas y Biológicas, Universidad de las Américas, Puebla
  • Nubia Lara-Rodríguez CIBIO, Universidad de Alicante
  • Wesley Dáttilo Universidad Veracruzana
  • Marta E. Bonet Ferrer Facultad de Biología, Universidad Complutense de Madrid
  • Victor Rico-Gray Instituto de Neuroetologia Universidad Veracruzana Xalapa, Veracruz 91190 Mexico

DOI:

https://doi.org/10.13102/sociobiology.v62i1.56-64

Keywords:

bee, plant, network, endemism, Mexico

Abstract

We analyzed the topological structure (e.g., links per species, connectance, core-periphery analyses, specialization, nestedness, modularity) of plant-bee interactions of four areas in Mexico. We used qualitative data (binary networks). Mexico exhibits a complex geography and community variation that can affect bee networks. Network architecture is variable within large spatial scales, thus our results should vary according to site characteristics (La Mancha and Totula in Veracruz, Carrillo Puerto in Quintana Roo, and the Tehuacan-Cuicatlan valley, in Puebla), type of vegetation, endemism, altitude, size of area sampled. Network topology varied among sites, and the presence of nested or modular patterns was analyzed for robustness to simulated species extinctions. The lowest species richness was recorded for the Quintana Roo site (15 plant, 25 bee species), and the highest for the Tehuacan-Cuicatlan valley site (88 plant, 231 bee species). There was a tendency to have more connected networks when species richness was low and networks with greater species richness had a higher number of interactions. The distribution of interactions differed between environments but not due to network size and all were significantly nested. The robustness to cumulative extinctions showed a different pattern at each site; the most robust network was at Carrillo Puerto, which also was the site with less species. Sites with more endemic species (e.g. Tehuacan) had more specialized interactions, and were more susceptible to extinction.

Downloads

Download data is not yet available.

References

Almeida–Neto M, Guimarães-Jr PR, Guimarães P, Loyola RD, Urlich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117:1227-1239

Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant-animal mutualistic networks. Proc Natl Acad Sci USA 100:9383-87

Bascompte J, Jordano P (2008) Redes mutualistas de especies. Rev Investi Cienc 384:50-59

Bascompte J, Jordano P (2014) Mutualistic Networks. Monographs in Population Biology No. 53. Princeton University Press, Princeton

Bastolla U, Fortuna MA, Pascual-García A, Ferrera A, Luque B, Bascompte J (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458:1018–1020

Blüthgen N (2010). Why network analysis is often disconnected from community ecology: A critique and an ecologist's guide. Basic Appl Ecol 11:185-195

Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:9-9

Burgos E, Ceva H, Perazzo RPJ, Devoto M, Medan D, Zimmermann M, Delbue AM (2007) Why nestedness in mutualistic networks? J Theor Biol 249:307-313

Burkle LA, Alarcón R (2011) The future of plant – pollinator diversity: understanding interaction networks across time, space and global change. Am J Bot 98:1–11

Castillo-Campos G, Bello, ACT (2006) Entornos Veracruzanos: La Costa de La Mancha, Instituto de Ecología, A.C., Xalapa, México.

CIQRO (Centro de Investigaciones de Quintana Roo) (1983) Sian Ka’an: estudios preliminares de una zona de Quintana Roo propuesta como reserva de la Biosfera. CIQRO-SEDUE, México

Clemente MA, Lange D, Del-Claro K, Prezoto F, Campos NR, Barbosa NC (2012) Flower-visiting social wasps and plants Interaction: network pattern and environmental complexity. Psyche 2012, id.478431

Clemente M A, Lange D, Dattilo W, Del-Claro K, Prezoto F (2013) Social wasp-flower visiting guild interactions in less structurally complex habitats are more susceptible to local extinction. Sociobiol. 60:337-344

Dáttilo W (2012) Different tolerances of symbiotic and nonsymbiotic ant-plant networks to species extinctions. Net Biol 2:127-138

Dáttilo W, Guimarães PR, Izzo TJ (2013) Spatial structure of ant-plant mutualistic networks. Oikos 122:1643-1648

Deguines N, Jono C, Baude M, Henry M, Julliard R, Fontaine C (2014) Large-scale trade-off between agricultural intensification and crop pollination services. Front Ecol Environ 12:212-217

Deloya C, Parrra-Tabla V, Delfín-González H (2007) Fauna de coleópteros Scarabaeidae Laparosticti y Trogidae (Coleoptera: Scarabaeoidea) asociados al bosque mesófilo de montaña, cafetales bajo sombra y comunidades derivadas en el centro de Veracruz, México. Neotrop Entomol 36:5-21

Díaz-Castelazo C, Rico-Gray V, Oliveira PS, Cuautle M (2004) Extrafloral nectary-mediated ant-plant interactions in the coastal vegetation of Veracruz, Mexico: richness, occurence, seasonality, and ant foraging patterns. Ecoscience 11:472-481

Donatti CI, Guimaraes PR, Galetti M, Pizo MA, Marquitti FMD, Dirzo R (2011) Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. Ecol Lett 14:773-781

Dormann CF, Fründ J, Blütgen N, Gruber B (2009) Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol J 2:7-24

Dupont YL, Padrón B, Olesen JM, Petanidou T (2009) Spatio-temporal variation in the structure of pollination networks. Oikos 118:1261–1269

Dyer LA, Walla TR, Greeney HF, Stireman JO, Hazen RF (2010) Diversity of interactions: a metric for studies of biodiversity. Biotropica 42:281–289

Fonseca CR, Ganade G (1996) Asymmetries, compartments and null interactions in an Amazonian ant-plant community. J Anim Ecol 65:339-34

García E (1981) Modificaciones al Sistema Climático de Köppen, Universidad Nacional Autónoma de México (UNAM), México DF

Guimarães PR, Guimarães P (2006) Improving the analyses of nestedness for large sets of matrices. Environ. Modell Softw 21:1512–1513

Guimerà R, Sales-Pardo M, Amaral LAN (2004) Modularity from fluctuations in random graphs and complex networks. Phys Rev 70:25-101

Guimerà R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433:895–900

Hagen M, Kissiling WD, Rasmussen C, de Aguiar MAM, Brown L, Carstensen DW, Alves-dos-Santos I, Dupont YL, Edwards FK, Genini J, Guimaraes PR, Jenkins GB, Jordano P, Kaiser-Bunbury CN, Ledger M, Maia KP, Marquitti FMD, McLaughlin O, Morellato LPC, O'Gorman EJ, Trojelsgaard K, Tylianakis JM, Vidal MM, Woodward G, Olesen JM (2012) Biodiversity, species interactions and ecological networks in a fragmented world. Adv Ecol Res 46:89-210

Hansen DM, Olesen JM, Jones CG (2002) Trees, birds and bees in Mauritius: exploitative competition between introduced honeybees and endemic nectarivorous birds. J Biogeogr 29:721-734

Hernández-Yáñez H, Lara-Rodríguez N, Díaz-Castelazo C, Dáttilo W, Rico-Gray V (2013) Understanding the complex structure of a plant-floral visitor network from different perspectives in coastal Veracruz, Mexico. Sociobiology 60:329-336

INEGI (Instituto Nacional de Estadística, Geografía e Informática) (1988) Síntesis geográfica, nomenclátor y anexo cartográfico del estado de Veracruz, México. INEG, México DF

Joner F, Specht G, Muller SC, Pillar VD (2011) Functional redundancy in a clipping experiment on grassland plant communities. Oikos 120:1420-142

Jordano P (1987) Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence, and coevolution. Am Nat 129:657–677

Jordano P, Bascompte J, Olesen JM (2003) Invariant properties in coevolutionary networks of plant-animal interactions. Ecol Lett 6:69–81

Jordano P, Vázquez D, Bascompte J (2009) Redes complejas de interacciones mutualistas planta-animal. In: Medel R, Aizen M, Zamora R (eds), Ecología y Evolución de las Interacciones Planta-Animal: conceptos y aplicaciones. Editorial Universitaria, Santiago, Chile

Lange D, Dáttilo W, Del-Claro K (2013) Influence of extrafloral nectary phenology on ant–plant mutualistic networks in a neotropical savanna Ecol Entomol 38:463–469

Lewinsohn T M, Prado PI, Jordano P, Bascompte J, Olesen JM (2006) Structure in plant-animal interaction assemblages. Oikos 113:174-184

Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston M A, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

Marquitti FMD, Guimaraes PR, Pires MM, Bittencourt LF (2013) MODULAR: Software for the autonomous computation of modularity in large network sets. Ecography 37:221-224

Méndez-Larios I, Ortiz E, Villaseñor JL (2004) Las Magnoliophyta endémicas de la porción xerofítica de la provincia florística del Valle de Tehuacán-Cuicatlán, México. An Inst Biol UNAM 75:87-104

Méndez-Larios I, Villaseñor JL, Lira R, Morrone JJ, Dávila P, Ortiz E (2005) Toward the identification of a core zone in the Tehuacán–Cuicatlán biosphere reserve (México), based on parsimony analysis of endemicity of flowering plant species. Interciencia 30:267-274

Mello MAR, Marquitti FMD, Guimarães PR, Kalko EKV, Jordano P, de Aguiar MAM (2011) The modularity of seed dispersal: differences in structure and robustness between bat–and bird–fruit networks. Oecologia 167:131–140

McPeek MA (1996) Trade-offs, food-web structure, and the coexistence of habitat specialists and generalists. Am Nat 148:124–138

Michener CD (2000) The Bees of the World. John Hopkins University Press, Baltimore

Mouchet MA, Villeger S, Mason NWH, Mouillot D (2010) Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Func Ecol 24:867–876

Olesen JM, Jordano P (2002) Geographic patterns in plant-pollinator mutualistic networks. Ecology 83:2416–2424

Olesen JM, Eskildsen I, Venkatasamy S (2002) Invasion of pollination networks on oceanic islands: importance of invader complexes and endemic super generalists. Divers Distrib 8:181–192.

Olesen JM, Bascompte J, DuPont YL, Jordano P (2007) The modularity of pollination networks. Proc Natl Acad Sci USA 104:19891-19896

Olesen J M, Bascompte J, Elberling H, Jordano P (2008) Temporal dynamics in a pollination network. Ecology 89:1573-1582

Poole RW (1974) An Introduction to Quantitative Ecology. McGraw.Hill, Ltd., Kogakusha

Ramos-Jiliberto R, Domínguez D, Espinoza C, López G, Valdovinos FS, Bustamante RO, Medel R (2010) Topological change of Andean plant-pollinator networks along an altitudinal gradient. Ecol Complex 7:86–90

Rico-Gray V.(1993) Use of plant-derived food resources by ants in the dry tropical lowlands of coastal Veracruz, Mexico. Biotropica 25:301-315

Roubik DW (ed) (1992) Ecology and Natural History of Tropical Bees. Cambridge University Press, Cambridge

Rzedowski J (1978) Vegetación de México. Editorial Limusa, México

Sánchez-Galván IR, Díaz-Castelazo C, Rico-Gray V (2012) Effect of hurricane Karl on a plant-ant network occurring in coastal Veracruz, Mexico. J. Trop Ecol 28:603-609

Santos GMM, Aguiar CML, Genini J, Martins CF, Zanella FCV, Mello MAR (2012) Invasive Africanized honeybees change the structure of native pollination networks in Brazil. Biol Invasions 14:2369–2378

Steffan-Dewenter I, Münzenberg U, Tscharntke T (2001) Pollination, seed set and seed predation on a landscape scale. Proc R Soc B 268:1685-1690

Stephens CR, Giménez Geu J, González C, Ibarra-Cerdeña CN, Sánchez-Cordero V, González-Salazar C (2009) Using biotic interaction networks for prediction in biodiversity and emerging diseases. PLoS One 4: e5725

Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

Tylianakis JM, Tscharntke T, Lewis, OT (2007) Habitat modification alters the structure of tropical host-parasitoid food webs. Nature 445:202-205

Valiente-Banuet A, Flores-Hernández N, Verdú M, Dávila P (1998) The chaparral vegetation in Mexico under a non-mediterranean climate: the convergence and madrean-tethyan hypotheses reconsidered. Am J Bot 85:1398-1408

Vázquez D, Aizen M (2004) Asymmetric specialization: a pervasive feature of plant-pollinator interactions. Ecology 85:1251-1257

Vázquez D, Blüthgen N, Cagnolo L, Chacoff NP (2009) Uniting pattern and process in plant–animal mutualistic networks: a review. Ann Bot 103:1445–1457

Vergara CH, Ayala R 2002. Diversity, phenology and biogeography of the bees (Hymenoptera, Apoidea) of Zapotitlán de las Salinas, Puebla. J. Kansas Entomol Soc 75:16-30

Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MG, Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69

Zavala JA (1982) Estudios ecológicos en el valle semiárido de Zapotitlán, Puebla y clasificación numérica de la vegetación, basada en atributos binarios de presencia o ausencia de las especies. Biótica 7:99-120

Downloads

Published

2015-04-07

How to Cite

Ramírez-Flores, V. A., Villanueva-Gutiérrez, R., Roubik, D. W., Vergara, C. H., Lara-Rodríguez, N., Dáttilo, W., Bonet Ferrer, M. E., & Rico-Gray, V. (2015). Topological structure of plant-bee networks in four Mexican environments. Sociobiology, 62(1), 56–64. https://doi.org/10.13102/sociobiology.v62i1.56-64

Issue

Section

Research Article - Bees

Most read articles by the same author(s)

1 2 > >>