Foraging specificity of Tetralonia (Thygatina) macroceps (Hymenoptera: Apidae: Anthophorinae) on Argyreia cuneata (Convolvulaceae)


  • Amala Udayakumar ICAR-National Bureau of Agricultural Insect Resources (NBAIR), Hebbal Bengaluru, Karnataka, India
  • Raghavendra Anjanappa ICAR-National Bureau of Agricultural Insect Resources (NBAIR), Hebbal Bengaluru, Karnataka, India
  • Kesavan Subaharan ICAR-National Bureau of Agricultural Insect Resources (NBAIR), Hebbal Bengaluru, Karnataka, India
  • Timalapur M. Shivalingaswamy ICAR-National Bureau of Agricultural Insect Resources (NBAIR), Hebbal Bengaluru, Karnataka, India



Argyreia cuneata, electroantennogram, foraging specificity, Tetralonia macroceps, volatile organic compounds


Floral specificity is a behavior that evolved due to mutualistic interactions between the plant-pollinator community. Flowers advertise themselves using visual or chemical cues to attract pollinators and gain reproductive success through pollination. Pollinators forage for rewards such as nectar or pollen produced by the flowers. We found that an anthophorid bee, Tetralonia macroceps, foraged specifically on Argyreia cuneata flowers. No visitation was observed on the flowers of A. nervosa though both belong to Convolvulaceae. T. macroceps was the most abundant floral visitor (5.21 bees/flower/5 min) on A. cuneata and did not visit A. nervosa. Mass flowering and narrow tubular flower structure with easy access to pollen in A. cuneata were the traits that accounted for the foraging specificity of T. macroceps. The present study investigates the preference of T. macroceps for the flowers and floral extracts of A. cuneata and A. nervosa. The bee visited 10.16 flowers/5 min of A. cuneata. T. macroceps were highly attracted to the flowers of A. cuneata. No bees were attracted to A. nervosa. The floral abundance of A. cuneata was relatively higher compared to A. nervosa. Pollen analysis of foraging bees of T. macroceps revealed the selective preference towards the pollen of A. cuneata. The highest number of bees preferred the extract of A. cuneata (7.75) compared to A. nervosa (0.50) in the Y-olfactory maze. Floral extract of A. cuneata caused the highest neuronal electroantennogram (EAG) response (1.48 mV) than A. nervosa (0.36 mV). Our preliminary studies indicated the presence of specific volatile organic compounds (VOCs) nonacosane (13.26%), hexatriacontane (12.06%), and beta farnesene (6.19%) observed in A. cuneata were absent in congener A. nervosa.


Download data is not yet available.


Abrol, D.P. (2009). Plant-pollinator interactions in the context of climate change - an endangered mutualism. Journal of Palynology, 45: 1-25.

Armbruster, S.A., Corbet, A.J., Vey, M., Shu-Juan, L. & Shuang-Quan, H. (2013). In the right place at the right time: Parnassia resolves the herkogamy dilemma by accurate repositioning of stamens and stigmas. Annals of Botany, 113: 97-103. DOI:

Blight, M.M., Metayer, M.L., Delegue, M.H.P., Pickett, J.A., Poll, F.P. & Wadhams, L.J. (1997). Identification of floral volatiles involved in recognition of oilseed rape flowers, Brassica napus by Honeybees, Apis mellifera. Journal of Chemical Ecology, 23: 1715-1727. DOI:

Bronstein, J.L., Alarcon, R. & Geber, M. (2006). The evolution of plant-insect mutualisms. New Phytologist, 172: 412-428. DOI:

Chittka, L. & Raine, N.E. (2006). Recognition of flowers by pollinators. Current Opinions on Plant Biology, 9: 428-35. DOI:

Damon, A. & Roblero, P.S. (2007). A survey of pollination in remnant orchid populations in Soconusco, Chiapas. Tropical Ecology, 48: 1-14.

Dobson, H.E.M., Groth, I. & Bergstrom, G. (1996). Pollen advertisement: chemical contrasts between flower and pollen odors. American Journal of Botany, 83: 877-885. DOI:

Dötterl, S. & Vereecken, N.J. (2010). The chemical ecology and evolution of bee-flower interactions: A review and perspectives. Canadian Journal of Zoology, 88: 668-697. doi: 10.1139/Z10-031. DOI:

Douglas, A.E. (2008). Conflict, cheats and the persistence of symbioses. New Phytologist, 177: 849-858. DOI:

Dreisig, H. 1995. Ideal free distributions of nectar foraging bumblebees. Oikos, 72: 161-172. DOI:

Ela, M.A., Ali, M., Fohouo, F.N.T. & Messi, J. (2012). The importance of a single floral visit of Eucara macrognatha and Tetralonia fraterna (Hymenoptera: Apidae) in the pollination and the yields of Abelmoschus esculentus in Maroua, Cameroon. African Journal of Agricultural Research, 7: 2853-2857. DOI:

Engel, M.S. & Baker, D.B. (2006). A New Species of Tetralonia (Thygatina) from India, with Notes on the Oriental Fauna (Hymenoptera: Apidae). American Museum Novitates, 3527: 1-9. DOI:[1:ANSOTT]2.0.CO;2

Erdtman, G. (1960). The Acetolysis method. A Revised Description. Svensk Botanisk Tidskrift, 54, 561-564.

Fenster, C.B., Armbruster W.S., Wilson, P., Dudash, M.R. & Thomson, J.D. (2004). Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution, and Systematics, 35: 375-403. DOI:

George, A.P., Nissen, R.J., Ironside, D.A. & Anderson, P. (1989). Effects of nitidulid beetles on pollination and fruit set of Annona sp. hybrids. Scientia Horticulturae, 39: 289-299. DOI:

Giurfa, M., Vorobyev, M., Kevan, P. & Menzel, R. (1996). Detection of coloured stimuli by honeybees: minimum visual angles and receptor-specific contrasts. Journal of Comparative Physiology A,178: 699-709. DOI:

Grass, I., Bohle, V., Tscharntke, T. & Westphal, C. (2018). How plants’ reproductive success is determined by the interplay of antagonists and mutualists. Ecosphere, 9: 2-15. DOI:

Hori, M. & Namatame, M. (2013). Host plant volatiles responsible for the invasion of Stenotus rubrovittatus (Heteroptera: Miridae) into paddy fields. Journal of Applied Entomology, 137: 340-346. DOI:

Karunaratne, W.A.I.P., Edirisinghe, J.P. & Gunatilleke, C.V.S. (2005). Floral relationships of bees in selected areas of Sri Lanka. Ceylon Journal of Science (Biological Science), 34: 27-45.

Klein, A.M., Vaissière, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C. & Tscharntke, T. (2007) Importance of pollinators in changing landscapes for world crops. Proceedings of Royal Society B, Biological Sciences, 274: 303-313. DOI:

Knudsen, J.T., Eriksson, R., Gershenzon, J. & Stihl, B. (2006). Diversity and distribution of floral scent. The Botanical Reviews, 72: 1-120. DOI:[1:DADOFS]2.0.CO;2

Kunze, J. & Gumbert, A. (2001). The combined effect of color and odor on flower choice behavior of bumblebees in flower mimic systems. Behavioral Ecology, 12: 447-456. DOI:

Kuriya, S., Hattori, M., Nagano, Y. & Itino, T. (2015). Altitudinal flower size variation correlates with local pollinator size in a bumblebee-pollinated herb, Prunella vulgaris L. (Lamiaceae). Journal of Evolutionary Biology, 28: 1761-1769. DOI:

Larue, A.A.C., Raguso, R.A. & Junker, R.R. (2016). Experimental manipulation of floral scent bouquets restructures flower-visitor interactions in the field. Journal of Animal Ecology, 85: 396-408. DOI:

Lawson, M.J., Craven, B.A., Paterson, E.G. & Settles, G.S. (2012). A computational study of odorant transport and deposition in the canine nasal cavity: implications for olfaction. Chemical Senses, 37: 553-566. DOI:

Leonard, A.S. & Masek, P. (2014). Multisensory integration of colors and scents: insights from bees and flowers. Journal of Comparative Physiology A, 200: 463-74. DOI:

Leonhardt, S.D., Zeilhofer, S., Bluthgen, N. & Schmitt, T. (2010). Stingless bees use terpenes as olfactory cues to find resin sources. Chemical Senses, 35: 603-611. DOI:

Mas, F., Horner, R., Brierley, S., Harper, A. & Suckling, D.M. (2020). The scent of individual foraging bees. Journal of Chemical Ecology, 46: 524-533. DOI:

Mayer, C., Adler, L., Armbruster, W. S., Dafni, A., Eardley, C., Huang, S.-Q., Kevan P.G., Ollerton, J., Packer, L., Ssymank, A., Stout, J.C. & Potts, S.G. (2011). Pollination ecology in the 21st century: key questions for future research. Journal of Pollination Ecology, 3: 8-23. DOI:

Michener, C.D., The bees of the world. Baltimore: Johns Hopkins University Press, 2000, xiv + [1] + 913 pp.

Milet-Pinheiro, P., Ayasse, M. & Dötterl, S. (2015). Visual and olfactory floral cues of Campanula (Campanulaceae) and their significance for host recognition by an oligolectic bee pollinator. PLoS One, 10: e0128577. DOI:

Montero, L.S., Garcia, S.C., Rosas, D.A., Crisostomo, J.F.G., Polanco, M.V., Conesa, J.G. & Lopez, L.C. (2018). Pollinator preferences for floral volatiles emitted by dimorphic anthers of a buzz-pollinated herb. Journal of Chemical Ecology, 44: 1058-1067. DOI:

Muhlemann, J.K., Waelti, M.O., Widmer, A. & Schiestl, F.P. (2006). Post pollination changes in floral odor in Silene latifolia: adaptive mechanisms for seed-predator avoidance? Journal of Chemical Ecology, 32: 1855 1860. DOI:

Nathan, P.T., Karuppudurai, T., Raghuram, H. & Marimuthu, G. (2009). Bat foraging strategies and pollination of Madhuca latifolia (Sapotaceae) in Southern India. Acta Chiropterologica, 11: 435-441. DOI:

Neff, J.L. & Rozen, J.G. (1995). Foraging and nesting biology of the bee, Anthemurgus passiflorae (Hymenoptera: Apoidea), descriptions of its immature stages, and observations on its floral host (Passifloraceae). American Museum Novitates, 3138: 1-19.

Ollerton, J., Winfree, R. & Tarrant, S. (2011) How many flowering plants are pollinated by animals? Oikos, 120: 321-326. DOI:

Parachnowitsch, A.L., Raguso, R.A. & Kessler, A. (2012). Phenotypic selection to increase floral scent emission, but not flower size or colour in bee-pollinated Penstemon digitalis. New Phytologist, 195: 667-675. DOI:

Pauly, A. (1984). Contribution a I’etude desgenres afrotropicaux de Nomiinae. Revue de Zoologie Africaine, 98: 693-702.

Possingham, H. P. 1992. Habitat selection by 2 species of nectarivore/habitat quality isolines. Ecology, 73: 1903-1912. DOI:

Raguso, R.A. & Willis, M.A. (2005). Synergy between visual and olfactory cues in nectar feeding by wild hawkmoths, Manduca sexta. Animal Behavior, 69: 407-418. DOI:

Reinecke, A., Ruther, J. & Hilker, M. (2005). Electrophysiological and behavioral responses of Melolantha melolantha to saturated and unsaturated aliphatic alcohols. Entomologia Experimentalis et Applicata, 115: 33-40. DOI:

Renoult, J.P., Valido, A., Jordano, P. & Schaefer, H.M. (2014). Adaptation of flower and fruit colours to multiple, distinct mutualists. New Phytologist, 201: 678-686. DOI:

Riffell, J.A., Alarcon, R., Abrell, J., Davidowitz, G., Bronstein, J.L., Hildebrand, J.G. (2008). Behavioral consequences of innate preferences and olfactory learning in hawkmoth-flower interactions. Proceedings of the National Academy of Sciences USA, 105: 3404-3409. DOI:

Sajad, A. & Saeed, S. (2010). Floral host plant range of Syrphid flies (Syrphidae: Diptera) under natural conditions in Southern Punjab, Pakistan. Pakistan Journal of Botany, 42: 1187-1200.

Salvagnin, U., Malnoy, M., Thöming, G., Tasin, M., Carlin, S., Martens, S., Vrhovsek, U., Angeli, S. & Anfora, G. (2018). Adjusting the scent ratio: using genetically modified Vitis vinifera plants to manipulate European grapevine moth behavior. Plant Biotechnology Journal, 16: 264-271. DOI:

Shaara, A.H.F. (2014). The foraging behavior of honey bees, Apis mellifera: a review. Veterinarni Medicina, 59: 1-10. DOI:

Sheppard, C.A. & Oliver, R.A. (2004). Yucca moths and yucca plants: Discovery of the most wonderful case of fertilisation. American Entomologist, 50: 32-46. DOI:

Shivalingaswamy, T.M., Amala, U., Gupta, A. & Raghavendra, A. (2020). Non-Apis bee diversity in an experimental pollinator garden in Bengaluru – a Silicon Valley of India. Sociobiology, 67: 593-598. DOI:

Spaethe, J., Moser, W.H. & Paulus, H.F. (2007). Increase of pollinator attraction by means of a visual signal in the sexually deceptive orchid, Ophrys heldreichii (Orchidaceae). Plant Systematics and Evolution, 264: 31-40. DOI:

Stang, M., Klinkhamer, P.G.L. & Meijden, E.V.D. (2006). Size constraints and flower abundance determine the number of interactions in a plant flower visitor web. Oikos, 112: 111-121. DOI:

Stein, K., Coulibaly, D., Stenchly, K., Goetze, D., Porembski, S., Lindner, A., Konaté, S. and Linsenmair, E.K. (2017). Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa. Scientific Reports, 7: 17691. DOI:

Stout, J. (2000). Does size matter? Bumblebee behavior and the pollination of Cytisus scoparius L. (Fabaceae). Apidologie, 31: 129-139. DOI:

Subramanya, S. & Radhamani, T.R. (1993) Pollination by birds and bats. Current Science, 65: 201-209.

Theis, N. & Raguso, R.A. (2005). The effect of pollination on floral fragrance in thistles. Journal of Chemical Ecology, 31: 2581-2600. DOI:

Vibina, V. & Subaharan, K. (2019). Electrophysiological and behavioral response of red palm weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) to fermented coconut sap neera. Journal of Plantation Crops, 47: 82-89.

Zander, E. (1935). Beitrage zur Herkunftsbestimmung bei Honig. I Reichsfachgruppe Imker, Berlin. II. Liedloff. Loth & Michaelis. Leipzig, p. 465.




How to Cite

Udayakumar, A., Anjanappa, R., Subaharan, K., & Shivalingaswamy, T. M. (2023). Foraging specificity of Tetralonia (Thygatina) macroceps (Hymenoptera: Apidae: Anthophorinae) on Argyreia cuneata (Convolvulaceae). Sociobiology, 70(2), e8262.



Research Article - Bees

Most read articles by the same author(s)