Ant species that remove diaspores alone are more efficient removers


  • Icaro Wilker Universidade Federal de Lavras
  • Mariana A. Rabelo Universidade Federal de Lavras
  • Marina A. Angotti Institudo Federal de Educação, Ciência e Tecnologia do Mato Grosso do Sul
  • Carla R. Ribas Universidade Federal de Lavras



functional traits, myrmecochory, seed removal, morphology, foraging strategy, animal-plant interactions


Secondary diaspore removal on the ground is an important ecosystem process. In this process, solitary foraging ants with larger body sizes are more efficient because they may remove more diaspores, faster and carry them at greater distances. Therefore, we sought to test the effects of the sizes of the morphological traits of ants, removal strategy, and nest distance on secondary diaspore removal, testing hypotheses related to the efficiency of this process. We evaluated the removal of artificial diaspores by ants in 15 areas of Cerrado sensu stricto (tropical savanna), collecting data on diaspore removal strategy (solitary or group), nest distance, diaspore discovery time, diaspore removal time, and the number of diaspores removed. Larger ants tended to remove diaspores alone and remove diaspores faster than smaller ones. Ants that removed diaspores alone removed more diaspores than ants that removed diaspores in groups. However, we did not find a linear relationship between ant size and diaspore removal. This is likely due to a limitation on, or a preference by larger ants for removing larger diaspores, while the smaller diaspores may have hindered manipulation or been less attractive to larger ants. Thus, the removal strategy was the best predictor of efficient diaspore removal performance, where the solitary foraging ants discover and remove diaspores quickly and remove more diaspores, mainly from the closest nests to the sampling point. However, the benefits (or not) of removing more diaspores still need to be evaluated.


Download data is not yet available.


Angotti, M.A., Rabello, A.M., Santiago, G.S. & Ribas, C.R. (2018). Seed removal by ants in Brazilian savanna: optimizing fieldwork. Sociobiology, 65: 155-161. doi: 10.13102/sociobiology. v65i2.1938

Anjos, D., Dáttilo, W. & Del-Claro, K. (2018). Unmasking the architecture of ant-diaspore networks in the Brazilian Savanna. PLoS ONE, 13: e0201117. doi: 10.1371/journal.pone.0201117

Anjos, D.V., Leal, L.C., Jordano, P. & Del-Claro, K. (2020). Ants as diaspore removers of non-myrmecochorous plants: a meta-analysis. Oikos, 129: 775-786. doi: 10.1111/oik.06940.

Baccaro, F.B., Feitosa, R.M., Fernández, F., Fernandes, I.O., Izzo, T.J., Souza, J.D. & Solar, R. (2015). Guia para os gêneros de formigas do Brasil. Manaus: Editora INPA, 388 p

Barton, K. (2009). MuMIn: multi-model inference. R package version 1. 0. 0. date: 11 August, 2022).

Bas, J.M., Oliveras, J. & Gomez, C. (2007). Final seed fate and seedling emergence in myrmecochorous plants: effects of ants and plant species. Sociobiology, 50: 101-111.

Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using doi: 10.48550/arXiv.1406.5823

Bestelmeyer, B.T. & Wiens, J.A. (2003). Scavenging ant foraging behavior and variation in the scale of nutrient redistribution among semi-arid grasslands. Journal of Arid Environments, 53: 373-386. doi: 10.1006/jare.2002.1044

Bieber, A.G.D., Silva, P.S.D., Sendoya, S.F. & Oliveira, P.S. (2014). Assessing the impact of deforestation of the Atlantic Rainforest on ant-fruit interactions: A field experiment using synthetic fruits. PLoS ONE, 9: e90369. doi: 10.1371/journal.pone.0090369

Bronstein, J.L., Alarcón, R. & Geber, M. (2006). The evolution of plant-insect mutualism. New Phytologist, 172: 412-428. doi: 10.1111/j.1469-8137.2006.01864.x

Campagnoli, M.L. & Christianini, A.V. (2021). Temporal consistency in interactions among birds, ants, and plants in a neotropical savanna. Oikos, e08231. doi: 10.1111/oik.08231

Christianini, A.V. & Oliveira, P.S. (2010). Birds and ants provide complementary seed dispersal in a neotropical savanna. Journal of Ecology, 98: 573-582. doi: 10.1111/j.1365-2745.2010.01653.x

Davidson, D.W. (1977). Species Diversity and Community Organization in Desert Seed-Eating Ants. Ecology, 58: 711-724. doi: 10.2307/1936208

Dornhaus, A. & Powell, S. (2010). Foraging and defence strategies. In L., Lach, C.L., Parr & K.L., Abbot (Eds.), Ant Ecology (pp. 210-230). Oxford: Oxford University Press

Espadaler, X.T. & Gómez, C. (1996). Seed production, predation and dispersal in the Mediterranean myrmecochore Euphorbia characias (Euphorbiaceae). Ecography, 19: 7-15. doi: 10.1111/j.1600-0587.1996.tb00150.x

Feener Jr, D.H., Lighton, J.R.B. & Bartholomew, G.A. (1988). Curvilinear allometry, energetics and foraging ecology: a comparison of leaf-cutting ants and army ants. Functional Ecology, 2: 509-520. doi: 10.2307/2389394

Fernandes, T.V., Paolucci, L.N., Carmo, F.M., Sperber, C.F. & Campos, R.I. (2018). Seed manipulation by ants: disentangling the effects of ant behaviours on seed germination. Ecological Entomology, 43: 712-718. doi: 10.1111/een.12655

Gibb, H., Stoklosa, J., Warton, D.I., Brown, A.M., Andrew, N.R. & Cunningham, S.A. (2015). Does morphology predict trophic position and habitat use of ant species and assemblages? Oecologia, 177: 519-531. doi: 10.1007/s00442-014-3101-9

Giladi, I. (2006). Choosing benefits or partners: a review of the evidence for the evolution of myrmecochory. Oikos, 112: 481-492. doi: 10.1111/j.0030-1299.2006.14258.x

Gomes, L., Desuó, I.C., Gomes, G. & Giannotti, E. (2009). Behavior of Ectatomma brunneum (Formicidae: Ectatomminae) preying on dipterans in field conditions. Sociobiology, 53: 913-926.

Harrell Jr, F.E. & Harrell Jr, M.F.E. (2019). Package ‘Hmisc’. CRAN2018: 235-236.

Hölldobler, B. (1980). Canopy orientation: a new kind of orientation in ants. Science, 210: 86-88. doi: 10.1126/science. 210.4465.86

Hughes, L. & Westoby, M. (1992). Fate of seeds adapted for dispersal by ants in Australian sclerophyll vegetation. Ecology, 73: 1285-1299. doi: 10.2307/1940676

Hughes, L., Westoby, M.T. & Jurado, E. (1994). Convergence of elaiosomes and insect prey: evidence from ant foraging behaviour and fatty acid composition. Functional Ecology, 8: 358-365. doi: 10.2307/2389829

Hurlbert, A.H., Ballantyne, F. & Powell, S. (2008). Shaking a leg and hot to trot: the effects of body size and temperature on running speed in ants. Ecological Entomology, 33: 144-154. doi: 10.1111/j.1365-2311.2007.00962.x

Leal, L.C., Neto, M.C.L., de Oliveira, A.F.M., Andersen, A.N. & Leal, I.R. (2014). Myrmecochores can target high-quality disperser ants: variation in elaiosome traits and ant preferences for myrmecochorous Euphorbiaceae in Brazilian Caatinga. Oecologia, 174: 493-500. doi: 10.1007/s00442-013-2789-2

Lengyel, S., Gove, A.D., Latimer, A.M., Majer, J.D. & Dunn, R.R. (2010). Convergent evolution of seed dispersal by ants, and phylogeny and biogeography in flowering plants: a global survey. Perspectives in Plant Ecology, Evolution and Systematics, 12: 43-55. doi: 10.1016/j.ppees.2009.08.001

Long, J.A. (2022). jtools: Analysis and Presentation of Social Scientific Data. R package version 2.2.0. (accessed date: 11 August, 2022).

Marques, G.D.V. & Del-Claro, K. (2010). Sazonalidade, abundância e biomassa de insetos de solo em uma reserva de Cerrado. Revista Brasileira de Zoociências, 12: 141-150.

Ness, J.H., Bronstein, J.L., Andersen, A.N. & Holland, J.N. (2004). Ant body size predicts dispersal distance of ant-adapted seeds: implications of small-ant invasions. Ecology, 85: 1244-1250. doi: 10.1890/03-0364

Nielsen, M.G., Jensen, T.F. & Holm-Jensen, I.B. (1982). Effect of load carriage on the respiratory metabolism of running worker ants of Camponotus herculeanus (Formicidae). Oikos, 39: 137-142. doi: 10.2307/3544477

Nunes, Y.R.F., Azevedo, I.F.P., Neves, W.V., Veloso, M.D.D.M., Souza, R. & Fernandes, G.W. (2009). Pandeiros: o pantanal mineiro. MG Biota, 2: 4-17.

Oliveira, P.S., Galetti, M., Pedroni, F. & Morellato, L.P.C. (1995). Seed cleaning by Mycocepurus goeldii ants (Attini) facilitates germination in Hymenaea courbaril (Caesalpiniaceae). Biotropica, 27: 518-522. doi: 10.2307/2388966

Ostwald, M.M., Ruzi, S.A. & Baudier, K.M. (2018). Ambush predation of stingless bees (Tetragonisca angustula) by the solitary-foraging ant Ectatomma tuberculatum. Journal of Insect Behavior, 31: 503-509. doi: 10.1007/s10905-018-9694-9

Palacio, E.E. & Fernández, F. (2003). Claves para las subfamilias y géneros. In: F. Fernández (Ed.), Introducción a las hormigas de la region Neotropical (pp. 233-260). Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humbolt

Pearce-Duvet, J.M.C., Elemans, C.P.H. & Feener Jr, D.H. (2011). Walking the line: search behavior and foraging success in ant species. Behavioral Ecology, 22: 501-509. doi: 10.1093/beheco/arr001

Pie, M.R. (2004) Foraging ecology and behaviour of the ponerine ant Ectatomma opaciventre Roger in a Brazilian savannah. Journal of Natural History, 38: 717-729. doi: 10.1080/0022293021000041699

Pizo, M.A. & Oliveira, P.S. (2000). The Use of Fruits and Seeds by Ants in the Atlantic Forest of Southeast Brazil. Biotropica, 32: 851-861. doi: 10.1111/j.1744-7429.2000.tb00623.x

Pizo, M.A. & Oliveira, P.S. (2001). Size and lipid content of non myrmecochorous diaspores: effects on the interaction withlitter-foraging ants in the Atlantic rain forest of Brazil. Plant Ecology, 157: 37-52. doi: 10.1023/A:1013735305100

Rabello, A.M., Queiroz, A.C.M., Lasmar, C.J., Cuissi, R.G., Canedo-Júnior, E.O., Schmidt, F.A. & Ribas, C.R. (2015). When is the best period to sample ants in tropical areas impacted by mining and in rehabilitation process? Insectes Sociaux, 62: 227-236. doi: 10.1007/s00040-015-0398-2

Rabelo, M.A., Angotti, M.A., Santiago, G.S., da Cruz Reis, A. & Ribas, C.R. (2021). Removal of diaspores by ants: What factors to evaluate? Acta Oecologica, 111: 103736. doi: 10.10 16/j.actao.2021.103736

Rabelo, M.A., Angotti, M.A., Santiago, G.S., da Cruz Reis, A. & Ribas, C.R. (2020). Canopy and Litter Cover do not Alter Diaspore Removal by Ants in the Cerrado. Sociobiology, 67: 501-507. doi: 10.13102/sociobiology.v67i4.5658

Raimundo, R.L.G., Guimaraes, P.R., Almeida-Neto, M. & Pizo, M.A. (2004). The influence of fruit morphology and habitat structure on ant-seed interactions: A study with artificial fruits. Sociobiology, 44: 261-270.

R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL (accessed date: 11 August, 2022).

Servigne, P. & Detrain, C. (2008). Ant-seed interactions: combined effects of ant and plant species on seed removal patterns. Insectes Sociaux, 55: 220-230. doi: 10.1007/s00040-008-0991-8

Silva, R.R. & Brandão, C.R.F. (2010). Morphological patterns and community organization in leaf-litter ant assemblages. Ecological Monographs, 80: 107-124. doi: 10.1890/08-1298.1

Takahashi, S. & Itino, T. (2012). Larger Seeds are Dispersed Farther: the Long-Distance Seed Disperser ant Aphaenogaster famelica Prefers Larger Seeds. Sociobiology, 59: 1401-1411. doi: 10.13102/sociobiology.v59i4.888

Venables, W.N. & Ripley, B.D. (2002). Modern Applied Statistics with S, Fourth edition. Springer, New York. ISBN 0-387-95457-0. (accessed date: 11 August, 2022).

Warren, R.J. & Giladi, I. (2014). Ant-mediated seed dispersal: a few ant species (Hymenoptera: Formicidae) benefit many plants. Myrmecological News, 20: 129-140.

Wei, T., Simko, V., Levy, M., Xie, Y., Jin, Y. & Zemla, J. (2017). Package ‘corrplot’. Statistician, 56: 316-324.

Weiser, M.D. & Kaspari, M. (2006). Ecological morphospace of New World ants. Ecological Entomology, 31: 131-142. doi: 10.1111/j.0307-6946.2006.00759.x

Wickham, H. (2011). ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics, 3: 180-185. doi: 10.1002/wics.147

Wilson, E.O. & Hölldobler, B. (2005). The rise of the ants: A phylogenetic and ecological explanation. Proceedings of the National Academy of Sciences of the United States of America, 102: 7411-7414. doi: 10.1073/pnas.0502264102




How to Cite

Wilker, I., Rabelo, M. A., Angotti, M. A., & Ribas, C. R. (2022). Ant species that remove diaspores alone are more efficient removers. Sociobiology, 69(3), e8308.



Research Article - Ants

Most read articles by the same author(s)