The Influence of abiotic factors on the foraging activity of Cephalotes borgmeieri (Kempf, 1951)
DOI:
https://doi.org/10.13102/sociobiology.v70i1.9085Abstract
The foraging activity can be defined as the search for food resources and is an activity of utmost importance for ant colony maintenance. Workers can be exposed to adverse environmental conditions during foraging, and because of it, some species can adjust their foraging behavior to achieve greater success in the search for resources. The foraging behavior has been studied in other ant species; however, studies with the Cephalotini tribe are still scarce in the literature. In this study, we evaluated how Cephalotes borgmeieri (Kempf) foragers adjust their foraging activity to variations in abiotic factors. Throughout the day, the flow of foragers is positively influenced by temperature and luminosity and negatively affected by relative air humidity. Wind speed does not affect the flow of foragers. During the day, we can observe four groups of activity intensity: very low, low, medium, and high. The foraging peak occurs at the hottest and least humid times of the day
Downloads
References
Abril, S., Oliveiras, J. & Gómez, C. (2014). Foraging activity and dietary spectrum of the Argentine ant (Hymenoptera: Formicidae) in invaded natural areas of the northeast Iberian Peninsula. Envinronmental Entomology, 36: 1166-1173. doi: 6-225X(2007)36[1166:FAADSO]2.0.CO;2
Ajayi, O.S., Appel, A.G., Chen., L. & Fadamiro, H.Y. (2020). Comparative cutaneous water loss and desiccation tolerance of four Solenopsis spp. (Hymenoptera: Formicidae) in the Southeastern United States. Insects, 11: 418. doi: 10.3390/insects11070418
Alma, A.M., Farji-Brener, A.G. & Elizalde, L. (2016). Collective response of leaf-cutting ants to the effects of wind on foraging activity. The American Naturalist, 188: 576-581. doi: 10.10 86/688419
Almeida, R.P.S., Andrade-Silva, J., Silva, R.R. & Morini, M.S.C. (2021). Twigs in leaf litter: overlap in twig size occupation by nesting ants. Insectes Sociaux, 68: 199-206. doi: 10.1007/s00040-021-00816-6
Assis, D.S., Camargo, G.A.R., Barrios, K., Tannure-Nascimento, I.C. & do Nascimento, F.S. (2021). Neighbor Colonies Affect Level of Foraging in the Generalist Ant Pheidole oxyops (Hymenoptera: Formicidae). Florida Entomologist, 104: 71-76. doi: 10.1653/024.104.0202
Auguie, B. (2017). Package ‘gridExtra’. Miscellaneous Functions for “Grid” Graphics.
Baptiste, A. (2017). gridExtra: Miscellaneous Functions for “Grid” Graphics. R package version 2.3. https://CRAN.R-project. org/package=gridExtra
Bates, D., Maechler, M., Bolker, B.M. & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67: 1-48. doi: 10.18637/jss.v067.i01
Bauer, U., Di Giusto, B., Skepper, J., Grafe, T. U. & Federle, W. (2012). With a Flick of the Lid: A Novel Trapping Mechanism in Nepenthes gracilis Pitcher Plants. PLoS ONE 7: e38951. doi: 10.1371/journal.pone.0038951
Bujan, J., Yanoviak, S.P. & Kaspari, M. (2016). Desiccation resistance in tropical insects: causes and mechanisms underlying variability in a Panama ant community. Ecology and Evolution, 6: 6282-6291. doi: 10.1002/ece3.2355
Burd, M. (2000). Foraging behaviour of Atta cephalotes (leaf-cutting ants): An examination of two predictions for load selection. Animal Behaviour, 60: 781-788. doi: 10.1006/anbe.2000.1537
Byk, J. & Del-Claro, K. (2020). Nectar- and pollen-gathering Cephalotes ants provide no protection against herbivory: a new manipulative experimente to test ant protective capabilities. Acta Ethologica, 13: 33-38. doi: 10.1007/s102 11-010-0071-8
Calheiros A.C., Ronque, M.U.V., Soares, H. & Oliveira, P.S. (2019). Foraging Ecology of the Leaf-Cutter Ant, Acromyrmex subterraneus (Hymenoptera: Formicidae), in a Neotropical Cerrado Savanna. Environmental Entomology, 48: 1434-1441. doi: 10.1093/ee/nvz120
Cerdá, X. (2001). Behavioural and physiological traits to thermal stress tolerance in two Spanish desert ants. Etologiá, 9: 15-27.
Corn, M.L. (1980). Polymorphism and Polyethism in the neotropical ant Cephalotes atratus (L.). Insectes Sociaux, 27: 29-42. doi: 10.1007/BF02224519
Chong, K.F. & Lee, C.Y. (2009). Influences of temperature, relative humidity and light intensity on the foraging activity of field populations of the longlegged ant, Anoplolepis gracilipes (Hymenoptera: Formicidae). Sociobiology, 54: 531.
Creighton, W.S. (1953). New data on the habits of the ants of the genus Veromnessor. American Museum Novitates, 1612: 7-17.
Creighton, W.S. (1963). Further studies on the habits of Cryptocerus texanus Santschi (Hymenoptera: Formicidae). Psyche, 70: 133-143.
D’ávila, S., Andrade, F.R., Prezoto, F. & Del-Claro, K. (2005). Activity Schedule and Foraging in Cephalotes atratus (Hymenoptera: Formicidae, Myrmiciinae). Sociobiology, 45: 105-118.
de Andrade, M.L. & Baroni-Urbani, C. (1999). Diversity andadaptation in the ant genus Cephalotes, past and presente (Hymenoptera, Formicidae). Stuttgarter Beiträge zur Naturkunde, 271: 1-889.
de Farias G.L. & Berezuk A.G. (2018). O regime pluviométrico no extremo sul de Mato Grosso do Sul entre os anos de 1976-2015. ENTRE-LUGAR, 9: 44-61. doi: 10.30612/el.v9i17.8314
Del-Claro, K., Santos J.C. & Junior, A.D.S. (2002). Etograma da formiga arborícola Cephalotes pusillus (Klug, 1824) (Formicidae: Myrmicinae). Revista de Etologia, 4: 31-40.
Federle, W. & Endlein, T. (2004). Locomotion and adhesion: dynamic control of adhesive surface contact in ants. Arthropod Structure and Development, 33: 67-75. doi: 10.1016/j.asd.2003.11.001
Fellers, J.H. (1989). Daily and seasonal activity in woodland ants. Oecologia, 78: 69-76.
Gordon, D.M. (2012). The dynamics of foraging trails in the tropical arboreal ant Cephalotes goniodontus. PLoS One, 7: e50472. doi: 10.1371/journal.pone.0050472
Gordon, D.M. (2017). Local regulation of trail networks of the arboreal turtle ant, Cephalotes goniodontus. The American Naturalist, 190: E156-E169. doi: 10.1086/693418
Harrison, X.A., Donaldson, L., Correa-Cano, M.E., Evans, J., Fisher, D.N., Goodwin, C.E.D., Robinson, B.S., Hodgson, D.J. & Inger, R. (2018). A brief introduction to mixed effects modelling and multi-model inference in ecology. Peer J., 6: e4794. doi: 10.7717/peerj.4794
Heinrich, B. (1993). The Hot-Blooded Insects: Strategies and Mechanisms of Thermoregulation. Cambridge, Harvard University Press, p. 601
Hölldobler, B. & Wilson, E.O. (1990). The ants. Harvard University Press. Cambridge, Massachusetts, p. 732
Hood, W.G. & Tschinkel, W.R. (1990). Desiccation resistance in arboreal and terrestrial ants. Physiological Entomology, 15: 23-35. doi: 10.1111/j.1365-3032.1990.tb00489.x
Jayatilaka, P., Narendra, A., Reid, F.R., Cooper, P. & Zeil, J. (2011). Different effects of temperature on foraging activity schedules in sympatric Myrmecia ants. Journal of Experimental Biology, 214: 2730-2738. doi: 10.1242/jeb.053710
Kleynhans, E. & Terblanche, J.S. (2011). Complex interactions between temperature and relative humidity on water balance of adult tsetse (Glossinidae, Diptera): implications for climate change. Frontiers in Physiology, 2: 74. doi: 10.3389/fphys.2011.00074
Lanan, M. (2014). Spatiotemporal resource distribution and foraging strategies of ants (Hymenoptera: Formicidae). Myrmecological News, 20: 53-70
Leahy, L., Scheffers, B.R. & Williams, S.E. (2022). Arboreality drives heat tolerance while elevation drives cold tolerance in tropical rainforest ants. Ecology, 103: e03549. doi: 10.1002/ecy.3549
Lee, C.Y. (2002). Tropical household ants: Pest status, species diversity, foraging behavior and baiting studies. In: Jones, S.C., Zhai, J., Robinson, W.H. (eds) Proceeding of the 4th International Conference on Urban Pests. Pocahantas Press, Blacksburg, Virginia, pp 3-18.
Lefcheck, J.S. (2016). piecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7: 573-579. doi: 10.1111/2041-210X.12512
Lima, L.D. & Antonialli-Junior, W.F. (2013). Foraging strategies of the ant Ectatomma vizottoi (Hymenoptera, Formicidae). Revista Brasileira de Entomologia, 57: 392-396. doi: 10.1590/S0085-56262013005000038
Moral, R.A., Hinde, J. & Demétrio, C.G.B. (2017). Half-Normal Plots and Overdispersed Models in R: The hnp Package. Journal of Statistical Software, 81: 1-23. doi: 10.18637/jss.v081.i10
Markin, P.G. (1970). Foraging behavior of the Argentine ant in a California citrus grove. Journal of Economic Entomology, 63: 740-744.
Mashaly, A.M.A., Al-Mekhlafi, F.A. & Al-Qahtani, A.M. (2013). Foraging activity and food preferences of the samsum ant, Pachycondyla sennaarensis. Bulletin of Insectology, 66: 187-193.
Narendra, A., Reid, S.F., & Hemmi, J.M. (2010). The twilight zone: ambient light levels trigger activity in primitive ants. Proceedings of the Royal Society B: Biological Sciences, 277: 1531-1538. doi: 10.1098/rspb.2009.2324
Nielsen, M.G. (1986). Respiratory rates of ants from different climatic areas. Journal of Insect Physiology, 32: 125-131. doi: 10.1016/0022-1910(86)90131-9
Nguyen, A.D., DeNovellis, K., Resendez, S., Pustilnik, J. D., Gotelli, N. J., Parker, J. D. & Cahan, S. H. (2017). Effects of desiccation and starvation on thermal tolerance and the heat-shock response in forest ants. Journal of Comparative Physiology B. 187: 1107-1116. doi: 10.1007/s00360-017-1101-x
Oliveira, A.M., Powell, P. & Feitosa, R.M. (2021). A taxonomic study of the Brazilian turtle ants (Formicidae: Myrmicinae: Cephalotes). Revista Brasileira de Entomologia, 65: e20210089. doi: 10.1590/1806-9665-RBENT-2021-0028
Orivel, J., Malherbe, M.C. & Dejean, A. (2001). Relationships Between Pretarsus Morphology and Arboreal Life in Ponerine Ants of the Genus Pachycondyla (Formicidae: Ponerinae). Annals of the Entomological Society of America, 3: 449-456. doi: 10.1603/0013-8746(2001)094[0449:RBPMAA] 2.0.CO;2
Pol, R. & de Casenave, J.L. (2004). Activity patterns of harvester ants Pogonomyrmex pronotalis and Pogonomyrmex rastratus in the central Monte desert, Argentina. Journal of Insect Physiology, 17: 647-661.
Powell, S. (2008). Ecological specialization and the evolution of a specialized caste in Cephalotes ants. Functional Ecology, 22: 902-911. doi: 10.1111/j.1365-2435.2008.01436.x
Powell, S. (2009). How ecology shapes caste evolution: linking resource use, morphology, performance and fitness in a superorganism. Journal of Evolutionary Biology, 22: 1004-1013. doi: 10.1111/j.1420-9101.2009.01710.x
Powell, S. (2016). A comparative perspective on the ecology of morphological diversification in complex societies: nesting ecology and soldier evolution in the turtle ants. Behavioral Ecology and Sociobiology, 70: 1075-1085. doi: 10.1007/s00265-016-2080-8
Powell S, Price, S. L. & Kronauer, D. J. (2020). Trait evolution is reversible, repeatable, and decoupled in the soldier caste of turtle ants. Proceedings of the National Academy of Sciences USA, 117: 6608-6615. doi: 10.1073/pnas.1913750117
R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Reeves, D.D. & Moreau, C.S. (2019). The evolution of foraging behavior in ants (Hymenoptera: Formicidae). Arthropod Systematics and Phylogeny, 77: 351-363. doi: 10.26049/ASP77-2-2019-10
Spicer M.E., Stark, A.Y., Adams, B.J., Kneale, R., Kaspari, M. & Yanoviak, S. P. (2017). Thermal constraints on foraging of tropical canopy ants. Oecologia, 183: 1007-1017. doi: 10.10 07/s00442-017-3825-4.
Stark, A.Y. & Yanoviak, S.P. (2018). Adhesion and running speed of a tropical arboreal ant (Cephalotes atratus) on wet substrates. Royal Society Open Science, 5: 181540. doi: 10.10 98/rsos.181540
Stuble, K.L., Pelini, S.L., Diamond, S.E., Fowler, D.A., Dunn, R.R. & Sanders, N.J. (2013). Foraging by forest ants under experimental climatic warming: a test at two sites. Ecology and Evolution, 3: 482-491. doi: 10.1002/ece3.473
Slowikowski, K. (2021). ggrepel: Automatically Position Non-Overlapping Text Labels with ‘ggplot2’. R package version 0.9.1. https://CRAN.R-project.org/package=ggrepel
Traniello, J.F.A. (1989). Foraging strategies of ants. Annual Review of Entomology, 34: 191-210. doi: 10.1146/annurev.en.34.010189.001203
Verberk, W.C., Bartolini, F., Marshall, D.J., Pörtner, H.O., Terblanche, J.S., White, C.R. & Giomi, F. (2015). Can respiratory physiology predict thermal niches? Annals of the New York Academy of Sciences, 1365: 73-88. doi: 10.1111/nyas.12876
Wehner, R., Marsh, A.C. & Wehner, S. (1992). Desert ants on a thermal tightrope. Nature, 357: 586-587. doi: 10.1038/357586a0
West, M. & Purcell, J. (2020). Task partitioning in ants lacking discrete morphological worker subcastes. Behavioral Ecology and Sociobiology, 74: 1-11. doi: 10.1007/s00265-020-02845-w
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York, pp 189-201
Wilson, E.O. (1976). A social ethogram of the neotropical arboreal ant Zacryptocerus varians (Fr. Smith). Animal Behaviour, 24: 354-363. doi: 10.1016/S0003-3472(76)80043-7
Wheeler, G.C. & Wheeler, J. (1971). Ant larvae of the subfamily Ponerinae: second supplement. Annals of the Entomological Society of America, 64: 1197-1217.
Yanoviak, S., Dudley, R. & Kaspari, M. (2005). Directed aerial descent in canopy ants. Nature, 433: 624-626. doi: 10.1038/nature03254
Zuur, A.F., Ieno, E.N. & Elphick, C.S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1: 3-14. doi: 10.1111/j.2041-210X.2009.00001.x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Cândida Anitta Pereira Rodrigues, Jean Carlos dos Santos Lima, Rony Peterson Santos Almeida , Francieli Carlos de Oliveira, William Fernando Antonialli-Junior
This work is licensed under a Creative Commons Attribution 4.0 International License.
Sociobiology is a diamond open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).