Searching for Molecular Markers to Differentiate Bombus terrestris (Linnaeus) Subspecies in the Iberian Peninsula

Diego Cejas, Concepción Ornosa, Irene Muñoz, Pilar De la Rua


Bumblebees (genus Bombus Latreille) are pollinator insects of great ecological and economic importance, which commercial use for pollination has increased since the 80s. However, the introduction of foreign Bombus terrestris (Linnaeus) has resulted in a decline of native bumblebee populations in Japan, Chile or Argentina among others. To study the potential introgression of commercial B. terrestris into the Iberian endemic subspecies Bombus terrestris lusitanicus Krüger, it is necessary to find a precise molecular marker that differentiates both subspecies. For this purpose, comparative analyses were carried out between B. t. lusitanicus and B. t. terrestris (Linnaeus) from Spain and from Belgium by sequencing the nuclear genes elongation factor 1-α and arginine kinase and the mitochondrial gene 16S ribosomal RNA, and genotyping with eleven microsatellite loci. No differentiation was observed at the nuclear level, but haplotypes found within the 16S sequence correlated with the morphological characterization of the subspecies. In a case study including individuals sampled before the establishment of bumblebee rearing companies and others from recent samplings, we detected hybrid individuals (those with non-matching morphological subspecies and 16S haplotype) more frequently in the south supporting the naturalization of commercial B. t. terrestris and introgression events between both subspecies. This marker should be used in Iberian populations with the aim to support management and conservation actions in endemic populations of B. t. lusitanicus.


bumblebees; genetic diversity; ArgK; EF1; 16S; mitochondrial DNA; microsatellites; Iberian Peninsula

Full Text:



Acosta, A.L., Giannini, T.C., Imperatriz-Fonseca, V.L. & Saraiva, A.M. (2016). Worldwide Alien Invasion: A Methodological Approach to Forecast the Potential Spread of a Highly Invasive Pollinator. PLoS ONE, 11: e0148295. doi: 10.1371/journal.pone.0148295

Aizen, M.A., Morales, C.L., Vázquez, D.P., Garibaldi, L.A., Sáez, A. & Harder, L.D. (2014). When mutualism goes bad: density-dependent impacts of introduced bees on plant reproduction. New Phytologist, 204: 322-328. doi: 10.1111/nph.12924

Aizen, M.A., Smith-Ramírez, C., Morales, C.L., Vieli, L., Sáez, A., Barahona-Segovia, R.M., Arbetman, M.P., Montalva, J., Garibaldi, L.A., Inouye, D.W. &

Harder, L. (2018). Coordinated species importation policies are needed to reduce serious invasions globally: The case of alien bumblebees in South America. Journal of Applied Ecology, doi: 10.1111/1365-2664.13121

Cameron, S., Hines, H.M. & Williams, P.H. (2007). A comprehensive phylogeny of the bumble bees (Bombus). Biological Journal of the Linnean Society, 91: 161-188. doi: 10.1111/j.1095-8312.2007.00784.x

Coppée, A., Terzo, M., Valterova, I. & Rasmont, P. (2008). Intraspecific Variation of the Cephalic Labial Gland Secretions in Bombus terrestris (L.) (Hymenoptera: Apidae). Chemistry & Biodiversity, 5: 2654-2661. doi: 10.1002/cbdv.200890219.

Dreier, S., Redhead, J., Warren, I., Bourke, A., Heard, M., Jordan, W., . . . Carvell, C. (2014). Fine-scale spatial genetic structure of common and declining bumble bees across an agricultural landscape. Molecular Ecology, 23: 3384-3395. doi: 10.1111/mec.12823

Estoup, A., Solignac, M., Harry, M. & Cornuet, J. (1993). Characterization of (GT)n and (CT)n microsatellites in two insect species: Apis mellifera and Bombus terrestris. Oxford University Press, 21: 1427-1431.

Estoup, A., Solignac, M., Cornuet, J., Goudet, J. & Scholl, A. (1996). Genetic differentiation of continental and island populations of Bombus terrestris (Hymenoptera: Apidae) in Europe. Molecular Ecology, 5: 19-31.

Facon, B., Crespin, L., Loiseau, A., Lombaert, E., Magro, A. & Estoup, A. (2011). Can things get worse when an invasive species hybridizes? The harlequin ladybird Harmonia axyridis in France as a case study. Evolutionary Applications, 4: 71-88. doi: 10.1111/j.1752-4571.2010.00134.x.

Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347: 1255957. doi:10.1126/science.1255957

Hines, H., Cameron, S. & Williams, P. (2006). Molecular phylogeny of the bumble bee subgenus Pyrobombus (Hymenoptera:Apidae:Bombus) with insights into gen utility for lower-level analysis. Invertebrate Systematics, 20: 289-303. doi: 10.1071/IS05028

Ings, T.C., Ings, N.L., Chittka, L. & Rasmont, P. (2010). A failed invasion? Commercially introduced pollinators in Southern France. Apidologie, 41: 1-13. doi: 10.1051/apido/2009044

Inoue, M., Yokoyama, J. & Washitani, I. (2008). Displacement of Japanese native bumblebees by the recently introduced Bombus terrestris (L.) (Hymenoptera: Apidae). Journal of Insect Conservation, 12: 135-146. doi: 10.1007/s10841-007-9071-z

Ivanova, N., Dewaard, J. & Herbert, D. (2006). An inexpensive, automation-friendly protocol for recovering high-quality DNA. Molecular Ecology Notes, 6: 998-1002. doi: 10.1111/j.1471-8286.2006.01428.x

Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24: 1403-1405. doi:10.1093/bioinformatics/btn129

Jombart, T. & Ahmed, I. (2011). adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics, 24: 1403–1405. doi: 10.1093/bioinformatics/btr521

Kawakita, A., Sota, T., Ascher, J., Ito, M., Tanaka, H. & Kato, M. (2003). Evolution and Phylogenetic Utility of Alignment Gaps Within Intron Sequences of Three Nuclear Genes in Bumble Bees (Bombus). Molecular Biology and Evolution, 20: 87-92. doi: 10.1093/molbev/msg007

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., … Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28: 1647-1649. doi: 10.1093/bioinformatics/bts199

Kraus, F., Szentgyörgyi, H., Rozej, E., Rhode, M., Moron, D. & Woyciechowski, M. (2010). Greenhouse bumblebees (Bombus terrestris) spread their genes into the wild. Conservation Genetics, 12: 187-192. doi:10.1007/s10592-010-0131-7

Lautenbach, S., Seppelt, R., Liebscher, J. & Dormann, F.C. (2012). Spatial and Temporal Trends of Global Pollination Benefit. PloS one, 7: e35954. doi: 10.1371/journal.pone.0035954

Lecocq, T., Rasmont, P., Harpke, A. & Schweiger, O. (2015). Improving International Trade Regulation by Considering Intraspecific Variation for Invasion Risk Assessment of Commercially Traded Species: The Bombus terrestris Case. Conservation Letters, 9: 281-289. doi:10.1111/conl.12215

Lecocq, T., Coppée, A., Michez, D., Brasero, N., Rasplus, J.Y., Valterová, I. & Rasmont, P. (2016). The alien's identity: consequences of taxonomic status for the international bumblebee trade regulations. Biological Conservation, 195: 169-176. doi: 10.1016/j.biocon.2016.01.004

Matsumura, C., Yokoyama, Y., & Whasitani, I. (2004). Invasion Status and Potential Ecological Impacts of an Invasive Alien Bumblebee, Bombus terrestris L. (Hymenoptera: Apidae) Naturalized in Southern Hokkaido, Japan. Global Environmental Research, 8: 51-66.

Morales, C.L., Arbetman, M.P., Cameron S.A. & Aizen, M.A. (2013). Rapid ecological replacement of a native bumble bee by invasive species. Frontiers in Ecology and the Environment, 11: 529-534. doi: 10.1890/120321

Moreira, A., Horgan, F., Murray, T. & Kakouli-Duarte, K. (2015). Population genetic structure of Bombus terrestris in Europe: Isolation and genetic differentiation of Irish and British populations. Molecular Ecology, 24: 3257-3268. doi:10.1111/mec.13235

Murray, T.E., Fitzpatrick, U., Brown, M.J.F. & Paxton, R.J. (2008). Cryptic species diversity in a widespread bumble bee complex revealed using mitochondrial DNA RFLPs. Conservation Genetics, 9: 653-666. doi: 10.1007/s10592-007-9394-z

Ornosa, C. (1996). Una nota de atención sobre la introducción artificial de subespecies foráneas de abejorros polinizadores en la Península Ibérica (Hymenoptera, Apidae, Bombinae). Boletín de la Asociación Española de Entomología, 20: 259-260.

Ornosa, C. & Ortiz-Sánchez, F. (2004). Hymenoptera: Apoidea I, Fauna Ibérica (Vol. 23). Madrid: Museo de Ciencias Naturales, CSIC, 553 p

Ornosa, C., Torres, F. & De la Rúa, P. (2017). Updated list of bumblebees (Hymenoptera: Apidae) from the Spanish Pyrenees with notes on their decline and conservation status. Zootaxa, 4237: 41-77. doi: 10.11646/zootaxa.4237.1.3.

Peakall, R. & Smouse, P. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 28: 2537-2539. doi: 10.1093/bioinformatics/bts460

R Development Core Team (2013). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

Rasmont, P., Coppée, A., Michez, D., & De Meulemeester, T. (2008). An overview of the Bombus terrestris (L. 1758) subspecies (Hymenoptera: Apidae). Annales de la Société Entomologique de France (N.S.), 44: 243-250. doi: 10.1080/00379271.2008.10697559

Rokas, A., Nylander, J., Ronquist, F. & Stone, G. (2002). A maximum-likelihood analysis of eight phylogenetic markers in gallwasps (Hymenoptera: Cynipidae): implications for insect phylogenetic studies. Molecular Phylogenetics and Evolution, 22: 206-219. doi: 10.1006/mpev.2001.1032

Schmid-Hempel, R., Eckhardt, M., Goulson, D., Heinzmann, D., Lange, C., Plischuk, S., . . . Schmid-Hempel, P. (2014). The invasion of southern South America by imported bumblebees and associated parasites. Journal of Animal Ecology, 83: 823-837. doi: 10.1111/1365-2656.12185

Sutherland, W. J., Barnard, P., Broad, S., Clout, M., Connor, B., Côté, I. M., … Ockendon, N. (2016). A 2017 Horizon scan of emerging issues for global conservation and biological diversity. Trends in Ecology and Evolution, 32: 31-42. doi: 10.1016/j.tree.2016.11.005

Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30: 2725-2729. doi:10.1093/molbev/mst197

Vargas, P., Ornosa, C., Blanco-Pastor, J.L., Romero, D., Fernández-Mazuecos, M. & Rodríguez-Gironés, M.A. (2013). Searching for areas of genetic diversity in Sierra Nevada: analyses of plants and bees. In L. Ramírez & B. Asensio (Eds.), Proyectos de investigación en parques nacionales: 2009-2012 (pp. 123-142). Naturaleza y Parques Naturales.

Velthuis, H.H..W & Doorn, A. (2006). A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie, 37: 421-451. doi:10.1051/apido:2006019

Wang, J. (2012). Computationally efficent sibship and parentage assignment from multilocus marker data. Genetics, 191: 183-194. doi: 10.1534/genetics.111.138149

Whitehorn, P., Tinsley, M., Brown, M. & Goulson, D. (2013). Investigating the impact of deploying commercial Bombus terrestris for crop pollination on pathogen dynamics in wild bumble bees. Journal of Apicultural Research, 52: 149-157. doi: 10.3896/IBRA.

Williams, P. H., Brown, M. J., Carolan, J. C., An, J., Goulson, D., Aytekin, A. M., ... & Huang, J. (2012). Unveiling cryptic species of the bumblebee subgenus Bombus s. str. worldwide with COI barcodes (Hymenoptera: Apidae). Systematics and Biodiversity, 10: 21-56. doi: 10.1080/14772000.2012.664574



  • There are currently no refbacks.

JCR Impact Factor 2016: 0.699