Antifungal Effect of Silver Nanoparticles on Rickia wasmannii Cavara (Ascomycota: Laboulbeniales) Infecting Myrmica scabrinodis Nylander (Formicidae) Ants

Authors

DOI:

https://doi.org/10.13102/sociobiology.v63i2.1049

Keywords:

antimycotic, fungal parasite, ectoparasite, AgNPs, treatment

Abstract

Rickia wasmannii Cavara (Ascomycota: Laboulbeniales) is an ectoparasitic fungus infecting Myrmica ants. Ant-parasitic Laboulbeniales and their interactions with the hosts have been in the focus of several studies. To assess the effects of these fungi, comparison of infected and uninfected or completely treated ants are needed. So far, treating Laboulbeniales infection was only achieved with cockroaches, but not with ants. We present a simple, yet relatively long, AgNP topical treatment that reduces or eliminates Rickia infection from Myrmica scabrinodis ants without affecting their lifespan. We discuss the possibilities of the proposed treatment in the light of the biology of Rickia.

Downloads

Download data is not yet available.

Author Biography

András Tartally, University of Debrecen

Department of Evolutionary Zoology and Human Biology, Senior lecturer

References

Báthori, F., Pfliegler, W. P. & Tartally, A. (2014) First records of the Myrmecophilous Fungus Laboulbenia camponoti Batra (Ascomycota: Laboulbeniales) from the Carpathian Basin. Sociobiology 61(3): 338–340. doi: 10.13102/sociobiology.v61i3.338-340

Báthori, F., Csata, E. & Tartally, A. (2015a). Rickia wasmannii Increases the Need for Water in Myrmica scabrinodis (Ascomycota: Laboulbeniales; Hymenoptera: Formicidae). Journal of Invertebrate Pathology, 126: 78–82. doi:10.1016/j.jip.2015.01.005.

Báthori, F., Pfliegler, W. P. & Tartally, A. (2015b). First Records Of The Recently Described Ectoparasitic Rickia lenoirii Santam. (Ascomycota: Laboulbeniales) In The Carpathian Basin. Sociobiology, 62(4): 620–622. doi: 10.13102/sociobiology.v62i4.901.

Cammaerts-Tricot, M.C. (1974). Production and Perception of Attractive Pheromones by Differently Aged Workers of Myrmica rubra (Hymenoptera Formicidae). Insectes Sociaux, 21: 235–247. doi: 10.1007/BF02226916.

Cavalieri, F., Tortora, M., Stringaro, A., Colone, M. & Baldassarri L. (2014). Nanomedicines for Antimicrobial Interventions. The Journal of Hospital Infection, 88: 183–190. doi: 10.1016/j.jhin.2014.09.009.

Csata, E., Erős, K. & Markó, B. (2014). Effects of the Ectoparasitic Fungus Rickia wasmannii on its Ant Host Myrmica scabrinodis: changes in host mortality and behavior. Insectes Sociaux, 61: 247–252. doi: 10.1007/s00040-014-0349-3

Gemeno, C., Zurek, L. & Schal, C. (2004). Control of Herpomyces spp. (Ascomycetes: Laboulbeniales) Infection in the Wood Cockroach, Parcoblatta lata (Dictyoptera: Blattodea: Blattellidae), with Benomyl. Journal of Invertebrate Pathology, 85: 132–135. doi: 10.1016/j.jip.2004.01.005.

Haelewaters, D., Zhao, S.Y., De Kesel, A., Handlin, R.E., Royer, I.R., Farrell, B.D. & Pfister, D.H. (2015). Laboulbeniales (Ascomycota) of the Boston Harbor Islands I: Species Parasitizing Coccinellidae and Staphylinidae, with Comments on Typification. Northeastern Naturalist, 22: 459–477. doi: 10.1656/045.022.0304.

Konrad, M., Grasse, A. V., Tragust, S. & Cremer, S. (2015). Anti-pathogen Protection Versus Survival Costs Mediated by an Ectosymbiont in an Ant Host. Proceedings of the Royal Society B: Biological Sciences, 282(1799): 20141976. doi: 10.1098/rspb.2014.1976.

Koto, A., Mersch, D., Hollis, B. & Keller, L. (2015). Social Isolation Causes Mortality by Disrupting Energy Homeostasis in Ants. Behavioral Ecology and Sociobiology, 69: 583–591. doi: 10.1007/s00265-014-1869-6.

Markó, B., Csata, E., Erős, K., Német, E., Czekes, Z. & Rózsa, L. (2016). Distribution of the Myrmecoparasitic Fungus Rickia wasmannii (Ascomycota: Laboulbeniales) Across Colonies, Individuals, and Body Parts of Myrmica scabrinodis. Journal of Invertebrate Pathology, 136: 74–80. doi: 10.1016/j.jip.2016.03.008.

Pech, P. & Heneberg, P. (2015). Benomyl Treatment Decreases Fecundity of Ant Queens. Journal of Invertebrate Pathology, 130: 61–63. doi:10.1016/j.jip.2015.06.012

Pérez, M. A., Moiraghi, R., Coronado, E.A. & Macagno, V. A. (2008). Hydroquinone Synthesis of Silver Nanoparticles: A Simple Model Reaction To Understand the Factors That Determine Their Nucleation and Growth. Crystal Growth & Design, 8: 1377–1383. doi: 10.1021/cg7009644.

Richards, A.G. & Smith, M. N. (1956). Infection of Cockroaches with Herpomyces (Laboulbeniales) II. Histology and Histopathology. Annals of the Entomological Society of America, 49: 85–93. doi: 10.1093/aesa/49.1.85.

Tragust, S., Tartally, A., Espalader, X. & Billen, J. (2016). Histopathology of Laboulbeniales (Ascomycota: Laboulbeniales): Ectoparasitic Fungi on Ants (Hymenoptera: Formicidae). Myrmecological News, 23: 81–89.

Weir, A. & Beakes, G. (1995). An Introduction to the Laboulbeniales: A Fascinating Group of Entomogenous fungi. Mycologist, 9: 6–10. doi: 10.1016/S0269-915X(09)80238-3.

Wride D. A., Pourmand, N., Bray, W. M., Kosarchuk, J. J., Nisam, S. C., Quan, T. K., Berkeley, R. F., Katzman, S., Hartzog, G. A., Dobkin, C. E. & Scott Lokey, R. (2014). Confirmation of the Cellular Targets of Benomyl and Rapamycin Using Next-generation Sequencing of Resistant Mutants in S. cerevisiae. Molecular bioSystems, 10: 3179–3187. doi: 10.1039/c4mb00146j.

You, C., Han, C., Wang, X., Zheng, Y., Li, Q., Hu, X. & Sun, H. (2012). The Progress of Silver Nanoparticles in the Antibacterial Mechanism, Clinical Application and Cytotoxicity. Molecular Biology Reports, 39: 9193–201. doi: 10.1007/s11033-012-1792-8.

Downloads

Published

2016-07-20

How to Cite

Pfliegler, W. P., Tálas, L., Báthori, F., Tartally, A., Pócsi, I., & Szemán-Nagy, G. (2016). Antifungal Effect of Silver Nanoparticles on Rickia wasmannii Cavara (Ascomycota: Laboulbeniales) Infecting Myrmica scabrinodis Nylander (Formicidae) Ants. Sociobiology, 63(2), 851–854. https://doi.org/10.13102/sociobiology.v63i2.1049

Issue

Section

Short Note