The Influence of Fire and Deforestation on the Floral Symmetry and Fitness of Adenocalymma nodosun (Bignoniaceae)

Authors

  • Vanessa Stefani Universidade Federal de Uberlândia (UFU) - LECI - Laboratório de Ecologia, Comportamento & Interações. http://orcid.org/0000-0002-8659-9194
  • Denise Lange Universidade Tecnológica Federal do Paraná Campus Santa Helena, rua Cerejeiras, s/n, CEP 85892-000, Santa Helena, PR, Brazil.
  • Andréa Andrade Vilela Universidade Federal de Uberlândia (UFU) - LECI - Laboratório de Ecologia, Comportamento & Interações.
  • Clébia Aparecida Ferreira Universidade Federal de Uberlândia (UFU) - LECI - Laboratório de Ecologia, Comportamento & Interações.
  • Kleber Del-Claro Universidade Federal de Uberlândia (UFU) Laboratório de Ecologia Comportamental e de Interações (LECI) - UFU - Av. Pará 1720 - Cep 38400-902, Uberlãndia, MG, Brasil

DOI:

https://doi.org/10.13102/sociobiology.v64i3.1270

Keywords:

Cerrado, Pollinator-Plant, Analysis of the Soil

Abstract

Burnings and deforestation are severe disturbances to plants and may represent a stressful situation for plant growth, and they can also affect plant-pollinator interactions and the reproductive success of plants. In this study, we verified the variation in floral symmetry of Adenocalymma nodosum (Bignoniacea) in two areas, one post-fire and other after deforestation. We also verified the effects on plant-pollinator interactions and fruit set production. Results showed that A. nodosum flowers were more asymmetric in mowing areas than in fire areas. Asymmetrical flowers presented low nectar concentration and bee visitation rates. Although mowed environments produce fewer fruits and seeds than areas affected by fire, the change was not significant. Soil from the burnt area showed higher nutrient and organic matter concentration and less aluminum than that of mowed areas. Our results showed that A. nodosum flowers in the deforestation area are more asymmetric than those in the post-fire area. This result suggest that Cerrado plants may be less adapted to deforestation than to fire, since they have been facing fire events for thousand years in this biome. We suggest that the effects of environmental stress on the development and fitness of plants may provide an important breakthrough to the understanding of insect-plant interactions in Cerrado savanna, where burnings and deforestation are frequent anthropogenic effects.

Downloads

Download data is not yet available.

Author Biographies

Vanessa Stefani, Universidade Federal de Uberlândia (UFU) - LECI - Laboratório de Ecologia, Comportamento & Interações.

Instituto de Biologia

Denise Lange, Universidade Tecnológica Federal do Paraná Campus Santa Helena, rua Cerejeiras, s/n, CEP 85892-000, Santa Helena, PR, Brazil.

Ciências Biológicas

Andréa Andrade Vilela, Universidade Federal de Uberlândia (UFU) - LECI - Laboratório de Ecologia, Comportamento & Interações.

Pós-Graduação em Ecologia e Conservação dos Recursos Naturais.

Clébia Aparecida Ferreira, Universidade Federal de Uberlândia (UFU) - LECI - Laboratório de Ecologia, Comportamento & Interações.

Instituto de Biologia

Kleber Del-Claro, Universidade Federal de Uberlândia (UFU) Laboratório de Ecologia Comportamental e de Interações (LECI) - UFU - Av. Pará 1720 - Cep 38400-902, Uberlãndia, MG, Brasil

Instituto de Ciências Biológicas

References

Alves-Silva, E. & Del-Claro, K. (2013). Effect of post-fire resprouting on leaf fluctuating asymmetry, extrafloral nectar quality, and ant-plant-herbivore interactions. Naturwissenschaften, 100: 525-532. doi: 10.1007/s00114-013-1048-z.

Alves-Silva, E. & Del-Claro, K. (2015). Herbivory-induced stress: Leaf developmental instability is cause by herbivore damage in early stages of leaf development. Ecological Indicators, 61: 359-365. doi:10.1016/j.ecolind.2015.0.036.

Bond, W.J. & Midgley, J.J. (2001). Ecology of sprouting in woody plants: the persistence niche. Trends in Ecology and Evolution, 16: 45-51. doi: 10.1016/S0169-5347(00)02033-4.

Bond, W.J. & Keeley, J.E. (2005). Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends in Ecology and Evolution, 20: 387-394. doi: 10.1016/j.tree.2005.04.025

Catry, F., Silva, J.S. & Fernandes, P. (2010). Efeitos do fogo na vegetação. In F. Moreira, F.X. Catry, J.S. Silva & R. Francisco (Eds.), Ecologia do fogo e gestão de áreas ardidas (pp. 49-86). Lisboa, ISA Press.

Chittka, L. & Thomson, J.D. (2004). Cognitive ecology of pollination: animal behavior and floral evolution. Cambridge University Press, Cambridge.

Christian, D.G., Riche, A.B. & Yates, N.E. (2008). Growth, yield and mineral content of Miscanthus x giganteus grown as a biofuel for 14 successive harvests. Industrial Crops and Products, 28: 320-327.

Cooke, R. (1998). Human settlement of Central America and Northernmost South America (14,000–8000 BP). Quaternary International, 49/50: 177-190.

Cornelissen, T. & Stiling, P. (2005). Perfect is best: low leaf fluctuating asymmetry reduces herbivory by leaf miners. Oecologia, 142: 46-56. doi: 10.1007/s00442-004-1724-y.

Coutinho, L.M. (1990). Fire in the Ecology of the Brazilian Cerrado. In J.G. Goldammer (Ed.), Fire in the Tropical Biota Ecological Studies (pp. 82-105). Spring-Verlag, Berlin Heidelberg.

Cuevas-Reyes, P., Fernandes, G.W., González-Rodríguez, A. & Pimenta, M. (2011). Effects of generalist and specialist parasitic plants (Loranthaceae) on the fluctuating asymmetry patterns of ruprestrian host plants. Basic and Applied Ecology, 12: 449-455. doi: 10.1016/j.baae.2011.04.004

Daloso, D.M. (2014). The ecological context of bilateral symmetry of organ and organisms. Natural Science, 6(4): 184-190. doi:10.4236/ns.2014.64022

Del-Claro, K. & Marquis, R.J. (2015). Ant species identity has a greater effect than fire on the outcome of an ant protection system in Brazilian Cerrado. Biotropica, 47: 459-467. doi: 10.1111/btp.12227

Díaz, M., Pulido, F.J. & Moller, A.P. (2004). Herbivore effects on developmental instability and fecundity of holm oaks. Oecologia, 139: 224-234. doi: 10.1007/s00442-004-1491-9.

Eiten, G. (1972). The cerrado vegetation of Brazil. Botanical Review, 38: 201-341.

Faegri, K. & Van Der Pijl, L. (1976). The principles of pollination ecology. 3°ed. Oxford: Pergamon Press, 256 p.

Fagundes, R., Anjos, D.V., Carvalho, R. & Del-Claro, K. (2015). Availability of food and nesting-sites as regulatory mechanisms for the recovery of ant diversity after fire disturbance. Sociobiology, 62(1): 1-9. doi: 10.13102/sociobiology.v62i1.1-9

Fernandes, P. & Rigolot, E. (2007). The fire ecology and management of maritime pine (Pinus pinaster Ait.). Forest Ecology and Management, 241: 1-13. doi: 10.1016/j.foreco.2007.01.010.

Ferreira, C.A. & Torezan-Silingardi, H.M. (2013). Implications of the floral herbivory on Malpighiacea plant fitness: visual aspect of the flower affects the attractiveness to pollinators. Sociobiology, 60: 323-328. doi: 10.13102/sociobiology.v60i3.323-328.

Frey, F.M. & Bukoski, M. (2013). Floral symmetry is associated with flower size and pollen production but not insect visitation rates in Geranium robertianum (Geraniaceae). Plant Species Biology, 29: 272-280. doi: 10.1111/1442-1984.12021

Gottsberger, G. & Silberbauer-Gottsberger, I. (2008). Life in the cerrado: a South American tropical seasonal. Flora, 203: 103-104. doi: 10.1016/j.flora.2007.06.001

Graham, J.H., Raz, S., Hel-Or, H. & Nevo, E. (2010). Fluctuating asymmetry: methods, theory, and applications. Symmetry, 2: 466-540. doi: 10.3390/sym2020466.

Gumbert, A. (2000). Color choices by bumble bees (Bombus terrestris): Innate preferences and generalization after learning. Behavioral Ecology and Sociobiology, 48: 36-43.

Hajabbasi, M.A., Jalalian, A. & Karimzadeh, H.R. (1997). Deforestation effects on soil physical and chemical properties, Lordegan, Iran. Plant and Soil, 2: 301-308.

Hoffmann, W.A. (1998). Post-burn reproduction of woody plants in a neotropical savanna: The relative importance of sexual and vegetative reproduction. Journal of Applied Ecology, 35: 422-433.

Hoffman, W.A. & Moreira, A. (2002). The role of fire in population dynamics of woody plants. In O.S. Oliveira & R.J. Marquis (Eds.), The cerrados of Brasil: ecology and natural history of a neotropical savanna (pp. 159-177). New York: Columbia University Press.

Kauffman, D., Cummings, D. & Ward, D. (1994). Relationships of fire, biomass and nutrient dynamics along vegetation gradient in the Brazilian Cerrado. Journal of Ecology, 82: 519-531.

Krug, C. & Alves-dos-Santos, I. (2008). O uso de diferentes métodos para amostragem da fauna de abelhas (Hymenoptera, Apoidea), um estudo em floresta ombrófila mista em Santa Catarina. Neotropical Entomology, 37(3): 265-278. doi: 10.1590/S1519-566X2008000300005

Ledru, M.P. (2002). Late Quaternary history and evolution of the cerrados as revealed by palynological records. In P.S. Oliveira & R.J. Marquis (Eds.), The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna (pp. 33-50). New York: Columbia University Press.

Marazzi, B. & Endress, P. (2008). Patterns and development of floral asymmetry in Senna (Leguminosae, Cassiinae). The American Journal of Botany, 95: 22-40. doi: 10.3732/ajb.95.1.22.

Medeiros, M.B. & Miranda, H.S. (2005). Mortalidade pós-fogo em espécies lenhosas de campo-sujo submetido a três queimadas prescritas anuais. Acta Botanica Brasilica, 19: 493-500.

Miller, R., Owens & S.J., Rorslett, B. (2011). Plants and colours: Flowers and pollination. Optics & Laser Technology, 43: 282-294. doi: 10.1016/j.optlastec.2008.12.018.

Milligan, J.R., Krebs, R.A. & Mal, T.K. (2008). Separating developmental and environmental effect on fluctuating asymmetry in Lythrum salicaria and Penthorum sedoides. Journal of Plant Sciences, 169: 625-630. doi: 10.1086/533600

Miranda, H.S., Bustamante, M.C. & Miranda, A. (2002). The fire fator. In PS, Oliveira & RJ Marquis (Eds.), The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna (pp. 51-68). New York: Columbia University Press.

Miranda, H.S., Sato, M.N., Nascimento-Neto, R. & Aires, F.S. (2009). Fires in the Cerrado, the Brazilian savanna. In M.A. Cochrane (Ed.), Tropical fire ecology: climate change, land use, and ecosystem dynamics (pp. 427-450). Chichester: Springer-Praxis.

Møller, A.P. (1995). Bumblebee preference for symmetrical flowers. Proceedings of the National Academy of Science of the USA, PNAS, 92: 2288-2292.

Møller, A.P. & Eriksson, M. (1994). Patterns of fluctuating asymmetry in flowers: implications for sexual selection in plants. Journal of Evolutionary Biology, 7: 97-113.

Møller, A.P. & Eriksson, M. (1995). Pollinator preference for symmetrical flowers and sexual selection in plants. Oikos, 73: 15-22.

Møller, A.P. & Pomiankowski, A. (1993). Fluctuating asymmetry and sexual selection. Genetica, 89: 267-279.

Møller, A.P. & Swaddle, J.P. (1997). Asymmetry, developmental stability, and evolution. University Press, Oxford, 302 p

Myers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A.B. & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403: 853-858.

Oliveira, M.E. & Silva, I.L. (1994). Efeitos do fogo sobre o solo. Floresta e Ambiente, 1: 142-145.

Oliveira, O.S. & Marquis, R.J. (2002). The Cerrados of Brazil: Ecology and natural history of a Neotropical Savanna. New York, Columbia University Press, 398 p.

Pellegrino, G. (2015). Pollinator limitation on reproductive success in Iris tuberosa. AoB Plants 7: plu089. doi: 10.1093/aobpla/plu089

Palmer, A.R. (2004). Symmetry breaking and the evolution of development. Science, 306: 828-833. doi: 10.1126/science.1103707.

Palmer, A.R. & Strobeck, C. (1986). Fluctuating asymmetry: measurement, analysis, patterns. The Annual Review of Ecology, Evolution, and Systematics, 17: 391-421.

Polak, M. (2003). Developmental instability – causes and consequences. University Press, Oxford, 459 p.

Potts, J.G. (2015). Effects of Floral Symmetry on Pollination in Bidens aristosa. The Southwestern Naturalist, 60: 370-373. doi: 10.1894/0038-4909-60.4.370

Radford, A.E., Dickinson, W.C., Massey, J.R. & Bell, C.R., 1974. Vascular plant systematics. New York: Harper & Row Publishers, 891 p.

Réu, W.F. & Del-Claro, K. (2005). Natural History and Biology of Chlamisus minax Lacordaire (Chrysomelidae: Chlamisinae). Neotropical Entomology, 34(3): 357-362.

Rizzini, C.T. & Heringer, E.P. (1962). Studies on the underground organs of the trees and shrubs from some southern Brazilian savannas. Anais da Academia Brasileira de Ciências. 34: 235-247.

Sampaio, D.S., Mendes-Rodrigues, C., Engel, T.B.J., Rezende, T.M., Bittencourt-Junior, N.S. & Oliveira, P.E. (2016). Pollination biology and breeding system of syntopic Adenocalymma nodosum and A. peregrinum (Bignonieae, Bignoniaceae) in the Brazilian savanna. Flora, 223: 19-29. doi:10.1016/j.flora.2016.04.009

Sanseverino, A.M. & Nessimian, J.L. (2008). Larvas de Chironomidae (Diptera) em depósito de folhiço em um riacho de primeira ordem da Mata Atlântica (Rio de Janeiro, Brasil). Revista Brasileira de Entomologia, 52: 95-104. doi: 10.1590/S0085-56262008000100017

Schlichting, C.D. (1986). The evolution of phenotypic plasticity in plants. The Annual Review of Ecology, Evolution, and Systematics, 17, 667-693.

Schmidt, I.B., Sampaio, A.B. & Borghetti, F., 2005. Efeitos da época de queima sobre a reprodução sexuada e estrutura populacional de Heteropterys pteropetala (Adr. Juss.), Malpighiaceae, em áreas de Cerrado sensu stricto submetidas a queimas bienais. Acta Botanica Brasilica, 19: 927-934.

Silva, I.A. & Batalha M.A. (2010a). Woody plant species co-occurrence in Brazilian savannas under different fire frequencies. Acta Oecologica, 36(1): 85-91. doi: 10.1016/j.actao.2009.10.004.

Silva, I.A. & Batalha, M.A. (2010b). Phylogenetic structure of Brazilian savannas under different fire regimes. Journal of Vegetation Science, 21(6): 1003-1013. doi: 10.1111/j.1654-1103.2010.01208.x

Simon, M.F., Grether, R., Queiroz, L.P., Skema, C., Pennington, R.T. & Hughes, C.E. (2009). Recent assembly of the Cerrado, a Neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proceedings of the National Academy of Sciences, PNAS, 106: 20359-20364. doi: 10.1073/pnas.0903410106

Smithwick, E.A.H., Turner, M.G., Mack, M.C. & Chapin III, F.S.C., 2005. Post fire soil N cycling in northern conifer forests affected by severe, stand-replacing wildfires. Ecosystems, 8: 163-181. doi: 10.1007/s10021-004-0097-8

Torezan-Silingardi, H.M., 2011. Predatory behavior of Pachodynerus brevithorax (Hymenoptera: Vespidae, Eumeninae) on Endophytic herbivore beetles in the Brazilian Tropical Savanna. Sociobiology, 57: 181-189.

Tresvenzol, L.M.F., Fiuza, T.S., Rezende, M.H., Ferreira, H.D., Bara, M.T.F., Zatta, D.T. & Paula, J.R. (2010). Morfoanatomia de Memora nodosa (Silva Manso) Miers, Bignoniaceae. Revista Brasileira de Farmacognosia, 20: 833-842. doi: 10.1590/S0102-695X2011005000002

Van Valen, L. (1962). A study of fluctuating asymmetry. Evolution, 16: 125-142.

Weiss, M.R. (1991). Floral color changes as cues for pollinators. Nature, 354: 227-229.

Wignall, A.E., Heiling, A.M., Cheng, K. & Herberstein, M.E. (2006). Flower symmetry preferences in honeybees and their crab spider predators. Ethology, 112: 510-518. doi: 10.1111/j.1439-0310.2006.01199.x

Wolowski, M. & Freitas, L. (2010). Sistema reprodutivo e polinização de Senna multijuga (Fabaceae) em Mata Atlântica Montana. Rodriguésia, 61: 167-79.

Zech, W., Senesi, N., Guggenberger, G., Kaiser, K., Lehmann, J., Miano, T.M., Miltner, A. & Shroth, G. (1997). Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma, 79: 117-161.

Downloads

Published

2017-10-17

How to Cite

Stefani, V., Lange, D., Vilela, A. A., Ferreira, C. A., & Del-Claro, K. (2017). The Influence of Fire and Deforestation on the Floral Symmetry and Fitness of Adenocalymma nodosun (Bignoniaceae). Sociobiology, 64(3), 301–309. https://doi.org/10.13102/sociobiology.v64i3.1270

Issue

Section

Research Article - Bees

Most read articles by the same author(s)

1 2 > >>