Leucine-aminopeptidase A (LAP-A) Encoding Gene in Apoidea: from Genomic Identification to Functional Insights Based on Gene Expression
DOI:
https://doi.org/10.13102/sociobiology.v65i4.3475Keywords:
Lap-A, bee, gene expression, aminopeptidase, PCRAbstract
Aminopeptidases are enzymes that cleave the N-terminal region of proteins and show structural conservation in prokaryotes and eukaryotes. We aimed to identify leucine-aminopeptidase A (LAP-A) orthologs in the genome of bee species with diff erent levels of social organization, and to explore the putative roles of this enzyme based on gene expression data. We identified a single gene for LAP-A on chromosome 15 of Apis mellifera L. and predicted orthologs in genomes of 11 bee species. We found evidence of LAP-A expression in more than 50 bee species. In honeybee and other bees, LAP-A transcripts were expressed in diverse tissues, including: brains, fat bodies, ovaries, testicles, integuments, and glands, on diff erent developmental stages that spanned from embryogenesis to adult life. Our fi ndings on the transcriptional activity of LAP-A are consistent with previously published data on enzymatic activity of LAP-A in bees throughout the development in different tissues and in both sexes. The presence of LAP-A gene in the Apoidea genomes and its ubiquitous expression support housekeeping roles of this enzyme and broad-spectrum functions in bees, independente of their life styles.
Downloads
References
Abramoff, M.D., Magalhães, P.J. & Ram, S.J. (2004). Image processing with Image J. Biophotonics International, 11: 36-42.
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215: 403-10.
Bartling, D. & Weiler, E.W. (1992). Leucine-aminopeptidase from Arabidopsis thaliana. Molecular evidence for a phylogenetically conserved enzyme of protein turnover in higher plants. European Journal of Biochemistry, 205: 425-31.
Bozić, N., Ivanović, J., Nenadović, V., Bergström, J., Larsson, T. & Vujcić, Z. (2008). Purifi cation and properties of major midgut leucyl aminopeptidase of Morimus funereus (Coleoptera, Cerambycidae) larvae. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 149: 454-62. doi: 10.1016/j.cbpb.2007.11.006.
Del Lama, M.A. & Mestriner, M.A. (1984). Starch-Gel electrophoretic patterns of exopeptidase phenotypes in 14 different species of bees. Brazilian Journal of Genetics, 7: 9-20.
Del Lama, M.A., Bezerra, R.M., Soares, A.E.E. & Rúvolo-Takasusuki, M.C.C. (2001). Genetic, ontogenetic, and tissue-specifi c variation of aminopeptidases of Apis mellifera. Apidologie, 32: 1-11. doi: 10.1051/apido:2001106.
Del Lama, M.A. & Ferreira, K.M. (2003). Genetic characterization of the peptidases of Polistes versicolor (Hymenoptera: Vespidae). Brazilian Journal of Biology, 63: 291-9. doi: 10.1590/S1519-69842003000200014.
Dorus, S., Busby, S.A., Gerike, U., Shabanowitz, J., Hunt, D.F. & Karr, T.L. (2006). Genomic and functional Evolution of the Drosophila melanogaster sperm proteome. Nature Genetics, 38: 1440-5. doi: 10.1038/ng1915.
Ferré, J. & Van Rie, J. (2002). Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annual Review of Entomology, 47: 501–33. doi: 10.1146/annurev.ento.47.091201.145234.
Ferreira, C. & Terra, W.R. (1984). Soluble aminopeptidases from cytosol and luminal contents of Rhynchosciara americana midgut caeca. Properties and phenanthroline inhibition. Insect Biochemistry and Molecular Biology, 14: 145–50.
Gómez, I., Rodríguez-Chamorro, D.E., Flores-Ramírez, G., Grande, R., Zúñiga, F., Portugal, F.J., Sánchez, J., Pacheco, S., Bravo, A. & Soberón, M. (2018). Spodoptera frugiperda (J. E. Smith) aminopeptidase N1 is functional receptor of Bacillus thuringiensis Cry1Ca toxin. Applied and Environmental Microbiology, pii: AEM.01089-18. doi: 10.1128/AEM.01089-18.
Hatta, T., Tsuji, N., Miyoshi, T., Islam, M.K., Alim, M.A., Yamaji, K., Anisuzzaman & Fujisaki, K. (2010). Leucine aminopeptidase, HlLAP, from the ixodid tick Haemaphysalis longicornis, plays vital roles in the development of oocytes. Parasitology International, 59: 286-9. doi: 10.1016/j.parint.2010.03.001.
Hong, X.Q., Bouvier, J., Wong, M.M., Yamagata, G.Y.L. & McKerrow, J.H. (1993). Brugia pahangi: identifi cation and characterization of an aminopeptidase associated with larvae molting. Experimental Parasitology, 76: 127–33.
Kapheim, K.M., Pan, H., Li, C., Salzberg, S.L., Puiu, D., Magoc, T., Robertson, H.M., Hudson, M.E., Venkat, A., Fischman, B.J., Hernandez, A., Yandell, M., Ence, D., Holt, C., Yocum, G.D., Kemp, W.P., Bosch, J., Waterhouse, R.M., Zdobnov, E.M., Stolle, E., Kraus, F.B., Helbing, S., Moritz, R.F., Glastad, K.M., Hunt, B.G., Goodisman, M.A., Hauser, F., Grimmelikhuijzen, C.J., Pinheiro, D.G., Nunes, F.M.F., Soares, M.P., Tanaka, É.D., Simões, Z.L.P., Hartfelder, K., Evans, J.D., Barribeau, S.M., Johnson, R.M., Massey, J.H., Southey, B.R., Hasselmann, M., Hamacher, D., Biewer, M., Kent, C.F., Zayed, A., Blatti, C. 3rd., Sinha, S., Johnston, J.S., Hanrahan, S.J., Kocher, S.D., Wang, J., Robinson, G.E. & Zhang, G. (2015). Social evolution. Genomic signatures of evolutionary transitions from solitary to group living. Science, 348(6239): 1139-43. doi: 10.1126/science.aaa4788.
Knowles, B.B. & Fristro m, J.W. (1967). The electrophoretic behaviour of ten enzyme systems in the larval integument of Drosophila melanogaster. Journal of Insect Physiology, 13: 731-7.
Liew, S.M., Tay, S.T. & Puthucheary, S.D. (2013). Enzymatic and molecular characterisation of leucine aminopeptidase of Burkholderia pseudomallei. BMC Microbiology, 13: 110. doi: 10.1186/1471-2180-13-110.
Lourenço, A.P., Mackert, A., Cristino, A.S. & Simões, Z.L. P. (2008). Validation of reference genes for gene expression. studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie, 39: 372. doi: 10.1051/apido: 2008015.
Matsui, M., Fowler, J.H. & Walling, L.L. (2006). Leucine aminopeptidases: diversity in structure and function. Biological Chemistry, 387(12): 1535-44. doi: 10.1515/BC.2006.191.
Mazza, R., Strozzi, F., Caprera, A. Ajmone-Marsan, P. & Willians, J.L. (2009). The other side of comparative genomics: genes with no ortologs between the cow and other mammalian species. BMC Genomics, 10: 604. doi: 10.1186/1471-2164-10-604.
McCulloch, R., Burke, M.E. & Sherratt, D.J. (1994). Peptidase activity of Escherichia coli aminopeptidase A is not required for its role in Xer site-specifi c recombination. Molecular Microbiology, 12: 241-51.
Miller, C.G. (1987). Protein degradation and proteolytic modifi cation. In F.C. Neidhardt, J.L. Ingraham, K.B. Low, B. Magasanik, M. Schaechter & H.E. Umbarger (Eds.), Escherichia coli and Salmonella typhimurium: cellular and molecular biology (pp. 680-691). Washington, D.C.: AMS Press.
Nandan, A. & Nampoothiri, K.M. (2017). Molecular advances in microbial aminopeptidases. Bioresource Technology, 245(PtB): 1757-1765. doi: 10.1016/j.biortech.2017.05.103.
Nunes, F.M.F., Valente, V., Sousa, J.F., Cunha, M.A., Pinheiro, D.G., Maia, R.M., Araujo, D.D., Costa, M.C., Martins, W.K., Carvalho, A.F., Monesi, N., Nascimento, A.M., Peixoto, P.M., Silva, M.F., Ramos, R.G., Reis, L.F., Dias-Neto, E., Souza, S.J., Simpson, A.J., Zago, M.A., Soares, A.E., Bitondi, M.M., Espreafi co, E.M., Espindola, F.S., Paço-Larson, M.L., Simões, Z.L., Hartfelder, K. & Silva, W.A.Jr. (2004). The use of open reading frame ESTs (ORESTES) for analysis of the honey bee transcriptome. BMC Genomics, 5: 84. doi: 10.1186/1471-2164-5-84.
Pinto, L.Z., Hartfelder, K., Bitondi, M.M.G., Simões, Z.L. P. (2002). Ecdysteroid titers in pupae of highly social bees relate to distinct modes of caste development. Journal of Insect Physiology, 48(8): 783-790. doi: 10.1016/S0022-1910(02)00103-8.
Pires, C.V., Freitas, F.C., Cristino, A.S., Dearden, P.K. & Simões, Z.L. (2016). Transcriptome analysis of honeybee (Apis mellifera) haploid and diploid embryos reveals early zygotic transcription during cleavage. PLoS One, 11(1): e014 6447. doi: 10.1371/journal.pone.0146447.
Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M.A. & Barrell, B. (2000). Artemis: sequence visualization and annotation. Bioinformatics, 16(10): 944-5.
Sanderink, G.J., Artur, Y. & Siest, G. (1988). Human aminopeptidases: a review of the literature. Journal of Clinical Chemistry and Clinical Biochemistry, 26: 795-807.
Schreiber, C.L. & Smith, B.D. (2018) Molecular imaging of aminopeptidase N in cancer and angiogenesis. Contrast Media & Molecular Imaging, 2018: 5315172. doi: 10.1155/2018/5315172.
Schumaker, T.T.S., Cristofoletti, P.T. & Terra, W.R. (1993). Properties and compartmentalization of digestive carbohydrases and proteases in Scaptotrigona bipunctata (Apidae: Meliponinae) larvae. Apidologie, 24: 3-17.
Sheppard, W.S. & McPheron, B.A. (1991). Ribosomal DNA diversity in Apidae. In D.R. Smith (Ed.), Diversity in the genus Apis (pp. 89-102). Boulder: Westview Press.
Spearman, R.I.C. (1973). The Integument: A Textbook of Skin Biology. Cambridge: Cambridge University Press, 211p.
Taylor, A. (1993). Aminopeptidases: towards a mechanism of action. Trends in Biochemical Sciences, 18(5): 167-71.
Terra, W.R. & Ferreira , C. (1994). Insect digestive enzymes: properties, compartmentalization and function. Comparative Biochemistry and Physiology, 109B:1–62.
Togo, T. & Morisawa, M. (2004). GPI-anchored aminopeptidase is involved in the acrosome reaction in sperm of the mussel Mytilus edulis. Molecular Reproduction and Development, 67(4): 465-71. doi: 10.1002/mrd.20037.
Valencia., J.W., de Sá, M.F. & Jiménez, A.V. (2014). Activity of leucine aminopeptidase of Telchin licus licus: an importante pest of sugarcane. Protein & Peptide Letters, 21(6): 535-41. doi: 10.2174/0929866521666140110111539.
Yen, C., Green, L. & Miller, C.G. (1980). Degradation of intracellular protein in Salmonella typhimurium peptidase mutants. Journal of Molecular Biology, 143(1): 21-33.
Zee, R.Y.L., Rivera, A., Inostroza, Y., Ridker, P.M., Chasman, D.I. & Romero, J.R. (2018) Gene variation of endoplasmic reticulum aminopeptidases 1 and 2, and risk of blood pressure progression and incident hypertension among 17,255 initially healthy women. International Journal of Genomics, 2018: 23 08585. doi: 10.1155/2018/2308585.
Downloads
Published
How to Cite
Issue
Section
License
Sociobiology is a diamond open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).