Magnetosensibility and Magnetic Properties of Ectatomma brunneun Smith, F. 1858 Ants
DOI:
https://doi.org/10.13102/sociobiology.v68i1.5188Keywords:
Aggression, Ectatomminae, magnetometry, insect behaviorAbstract
The aim of the present paper is to study magnetosensibility and to seek for magnetic nanoparticles in ants. The social insects, by living in colonies, developed very efficient methods of nestmate recognition, being less tolerant towards individuals from other colonies. Therefore, any kind of strange behavior between nestmates and/or conspecifics, besides those present in their own behavioral repertoire, is not expected. The behavior study in the present paper analyze whether changes in the intensity of applied magnetic fields on Ectatomma brunneun (Smith) ants can cause changes in the normal pattern of interaction between conspecifics. A pair of coils generating a magnetic field was used to change the whole local geomagnetic field. Magnetometry studies were done on abdomens and head + antennae using a SQUID magnetometer. The results show that changes in the geomagnetic field affect the usual pattern of interactions between workers from different colonies. The magnetometry results show that abdomens present superparamagnetic nanoparticles and heads present magnetic single domain nanoparticles. Behavior experiments show for the first time that Ectatomma brunneun ants are magnetosensible. The change in nestmate recognition of Ectatomma ants observed while a magnetic field is applied can be associated to some kind of disturbance in a magnetosensor presented in the body based on magnetic nanoparticles.Downloads
References
Acosta-Avalos, D., Wajnberg, E., Oliveira, O.S., Leal, I., Farina, M. & Esquivel, D.M.S. (1999). Isolation of magnetic nanoparticles from Pachycondyla marginata ants. Journal of Experimental Biology, 202: 2687-2692. DOI: https://doi.org/10.1242/jeb.202.19.2687
Anderson, J.B. & Vander Meer, R.K. (1993). Magnetic orientation in the fire ant, Solenopsis invicta. Naturwissenschaften, 80: 568-570. doi: 10.1007/BF01149274 DOI: https://doi.org/10.1007/BF01149274
Alves, O.C., Srygley, R.B., Riveros, A.J., Barbosa, M.A., Esquivel, D.M.S. & Wajnberg, E. (2014). Magnetic anisotropy and organization of nanoparticles in heads and antennae of neotropical leaf-cutter ants, Atta colombica. Journal of Physics D: Applied. Physics, 47: 435401. doi: 10.1088/0022-3727/47/43/435401 DOI: https://doi.org/10.1088/0022-3727/47/43/435401
Chen, J.S.C. & Nonacs, P. (2000). Nestmate recognition and intraspecific aggression based on environmental cues in Argentine ants (Hymenoptera: Formicidae). Annals of the Entomological Society of America, 93: 1333-1337. doi: 10.1603/0013-8746(2000)093[1333:NRAIAB]2.0.CO;2 DOI: https://doi.org/10.1603/0013-8746(2000)093[1333:NRAIAB]2.0.CO;2
Crozier, R.H. & Pamilo, P. (1996). Evolution of Social Insect Colonies: Sex Allocation and Kin-Selection. Oxford, UK: Oxford University Press.
Dell, A.I., Pawa,r S. & Savage, V.M. (2011). Systematic variation in the temperature dependence of physiological and ecological traits. Proceedings of the National Academy of Sciences, USA, 108: 10591-10596. doi 10.1073/pnas.1015178108 DOI: https://doi.org/10.1073/pnas.1015178108
Dell, A.I., Pawar, S & Savage, V.M. (2014). Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. Journal of Animal Ecology, 83: 70-84. doi: 10.1111/1365-2656.12081 DOI: https://doi.org/10.1111/1365-2656.12081
d’Ettorre, P. & Lenoir, A. (2010). Nestmate recognition. In: Lach L., Parr C., Abbott K., editors. Ant Ecology. 1st ed (pp. 194-209). Oxford, UK: Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780199544639.003.0011
Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D. & Martin, P.R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences,USA, 105: 6668-6672. doi: 10.1073/pnas.0709472105 DOI: https://doi.org/10.1073/pnas.0709472105
Dunn, R. & Messier, S. (1999). Evidence for the opposite of the dear enemy phenomenon in termites. Journal of Insect Behavior, 12: 461-464. DOI: https://doi.org/10.1023/A:1020958505815
Frizzi, F., Ciofi, C., Dapporto, L., Natali, C., Chelazzi, G., Turillazzi, S. & Giacomo, Santini. (2015) The rules of aggression: How genetic, chemical and spatial factors affect intercolony fights in a dominant species, the mediterranean acrobat ant Crematogaster scutellaris. PLoS One 10: e0137919. doi: 10.1371/journal.pone.0137919 DOI: https://doi.org/10.1371/journal.pone.0137919
Gilbert, B., Tunney, T.D., McCann, K.S., DeLong, J.P., Vasseur, D.A., Savage, V., Shurin, J.B., Dell, A.I., Barton, B.T., Harley, C.D.G., Kharouba, H.M., Kratina, P., Blanchard, J.L., Clements, C., Winder, M., Greig, H.S. & O'Connor, M.I. (2014). A bioenergetic framework for the temperature dependence of trophic interactions. Ecology Letters, 17: 902-914. doi: 10.1111/ele.12307 DOI: https://doi.org/10.1111/ele.12307
Gordon, D.M. (1989). Ants distinguish neighbor from strangers. Oecologia, 81: 198-200. doi: 10.1007/BF00379806 DOI: https://doi.org/10.1007/BF00379806
Helanterä, H., Lee, Y.R., Drijfhout, F.P. & Martin, S.J. (2011). Genetic diversity, colony chemical phenotype, and nest mate recognition in the ant Formica fusca. Behavioral Ecology, 22: 710-716. doi: 10.1093/beheco/arr037 DOI: https://doi.org/10.1093/beheco/arr037
Huey, R.B., Kearney, M.R., Krockenberger, A., Holtum, J.A., Jess, M. & Williams, S.E. (2012). Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society B: Biological Sciences, 367: 1665-1679. doi: 10.1098/rstb.2012.0005 DOI: https://doi.org/10.1098/rstb.2012.0005
Johnsen, S. & Lohmann, K.J. (2005). The physics and neurobiology of magnetoreception. Nature Reviews Neuroscience, 6: 703-712. doi: 10.1038/nrn1745 DOI: https://doi.org/10.1038/nrn1745
Jutsum, A.R, Saunders, T.S. & Cherrett, J.M. (1979). Intraspecific aggression in the leaf-cutting ant Acromyrmex octospinosus. Animal Behaviour, 27: 839-844. doi: 10.1016/0003-3472(79)90021-6 DOI: https://doi.org/10.1016/0003-3472(79)90021-6
Kermarrec, A. (1981). Sensibilite a un champ magnetique artificial et reaction d’evitement chez Acromyrmex octospinosus (Reich) (Formicidae, Attini). Insectes Sociaux, 28: 40-46. doi: 10.1007/BF02223621 DOI: https://doi.org/10.1007/BF02223621
Liang, D. & Silverman, J. (2000). “You are what you eat”: Diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften, 897: 412-416. doi: 10.1007/s001140050752 DOI: https://doi.org/10.1007/s001140050752
Lucano, M.J., Cernicchiaro, G., Wajnberg, E &, Esquivel, D.M.S. (2006). Stingless bee antennae: a magnetic sensory organ? Biometals, 19: 295-300. doi: 10.1007/s10534-005-0520-4 DOI: https://doi.org/10.1007/s10534-005-0520-4
Matthews, R.W. & Matthews, J.R. (2010). Insect Behaviour. London, UK: Springer, 513 p. DOI: https://doi.org/10.1007/978-90-481-2389-6
Monnin, T. & Peeters, C. (1999). Dominance hierarchy and reproductive conflicts among subordinates in a monogynous queenless ant. Behavioral Ecology, 10: 323-332. doi: 10.1093/beheco/10.3.323 DOI: https://doi.org/10.1093/beheco/10.3.323
Newey, P.S., Robson, K.S.K.A. & Crozier, R.H. (2010). Weaver ants Oecoplylla smaragdina encounter nasty neighbors rather than dear enemies. Ecology, 9: 2366-2372. doi: 10.1890/09-0561.1 DOI: https://doi.org/10.1890/09-0561.1
Oliveira, J.F., Wajnberg, E., Esquivel, D.M.S., Weinkauf, S., Winklhofer, M. & Hanzlik, M. (2010). Ant antennae: are they sites for magnetoreception? Journal of the Royal Society Interface, 7: 143-152. doi: 10.1098/rsif.2009.0102 DOI: https://doi.org/10.1098/rsif.2009.0102
Peck, M.A., Huh, Y., Skomski, R., Zhang, R., Kharel, P., Allison, M.D., Sellmyer, D.J. & Langell, M.A. (2011). Magnetic properties of NiO and (Ni,Zn)O nanoclusters. Journal of Applied Physics, 109: 07B518. doi: 10.1063/1.3556953 DOI: https://doi.org/10.1063/1.3556953
Pereira-Bomfim, M.G.C., Antonialli-Junior, W.F. & Acosta-Avalos, D. (2015). Effect of magnetic field on the foraging rhythm and behavior of the swarm-founding paper wasp Polybia paulista Ihering (Hymenoptera: Vespidae). Sociobiology, 62: 99-104. doi: 10.13102/sociobiology.v62i1.99-104 DOI: https://doi.org/10.13102/sociobiology.v62i1.99-104
Pereira, M.C., Firmino, E.L.B., Bernardi, R.C., Lima, L.D., Guimarães, I.C., Cardoso, C.A.L. & Antonialli-Junior, W.F. (2019). Dear enemy phenomenon in the ant Ectatomma brunneum (Formicidae: Ectatomminae): Chemical signals mediate intraspecifc aggressive interactons. Sociobiology, 66: 218-226. doi: 10.13102/sociobiology.v66i2.3554 DOI: https://doi.org/10.13102/sociobiology.v66i2.3554
Ratnieks, F.L.W., Foster, K.R. & Wenseleers, T. (2006). Conflict resolution in insect societies. Annual Review of Entomology, 51: 581-608. doi: 10.1146/annurev.ento.51.110104.151003 DOI: https://doi.org/10.1146/annurev.ento.51.110104.151003
Sanada-Morimura, S., Minai, M., Yokoyama, M., Hirota, T., Satoh, T. & Obara, Y. (2003). Encounter-induced hostility to neighbors in the ant Pristomyrmex pungens. Behavioral Ecology, 14: 713-718. doi: 10.1093/beheco/arg057 DOI: https://doi.org/10.1093/beheco/arg057
Sorvari, J., Theodora, P., Turillazzi, S., Hakkarainen, H. & Sundsteöm, L. (2008). Food resources, chemical signaling, and nestmate recognition in the ant Formica aquilonia. Behavioral Ecology, 19: 441-447. doi: 10.1093/beheco/arm160 DOI: https://doi.org/10.1093/beheco/arm160
Sturgis, S.J. & Gordon, M.D. (2012). Nestmate recognition in ants (Hymenoptera: Formicidae): a review. Myrmecological News, 16: 101-110.
Suarez, A.V., Tsuitsui, N.D., Holway, D.A. & Case, T.J. (1999). Behavioral and genetic differentiation between native and introduced populations of the Argentine ant. Biological Invasions, 1: 43-53. doi: 10.1023/A:1010038413690 DOI: https://doi.org/10.1023/A:1010038413690
Sunday, J.M., Bates, A.E., Kearney, M.R, Colwell, R.K., Dulvy, N.K., Longino, J.T. & Huey, R.B. (2014). Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences, USA, 111: 5610-5615. doi: 10.1073/pnas.1316145111 DOI: https://doi.org/10.1073/pnas.1316145111
Temeless, E.J. (1994). The role of neighbours in territorial systems: when are they “dear enemies?” Animal Behaviour, 47: 339-350. doi: 10.1006/anbe.1994.1047 DOI: https://doi.org/10.1006/anbe.1994.1047
Thomas, M.L., Tsutsui, N.D. & Holway, D.A. (2004). Intraspecific competition influences the symmetry and intensity of aggression in the Argentine ant. Behavioral Ecology, 16: 472-481. doi: 10.1093/beheco/ari014 DOI: https://doi.org/10.1093/beheco/ari014
van Zweden, J.S, Dreier, S. & d’Ettorre, P. (2009). Disentangling environmental and heritable nestmate recognition cues in a carpenter ant. Journal of Insect Physiology, 55: 158-163. doi: 10.1016/j.jinsphys.2008.11.001 DOI: https://doi.org/10.1016/j.jinsphys.2008.11.001
van Zweden, J.S. & d’Ettorre, P. (2010). Nestmate recognition in social insects and the role of hydrocarbons. In: Blomquist G.J., Bagnères A.G., editors. Insect hydrocarbons biology, biochemistry, and chemical ecology. 1st ed. Cambridge, UK: Cambridge University Press. p. 222 - 243. DOI: https://doi.org/10.1017/CBO9780511711909.012
Vasseur, D.A., DeLong, J.P., Gilbert, B., Greig, H.S., Harley, C.D.G., McCann, K.S., Savage, V., Tunney, T.D. & O’Connor, M.I. (2014). Increased temperature variation poses a greater risk to species than climate warming. Proceedings of the Royal Society B: Biological Sciences, 281: 20132612. doi: 10.1098/rspb.2013.2612 DOI: https://doi.org/10.1098/rspb.2013.2612
Vowles, D.M. (1954). The orientation of ants. II. Orientation to light, gravity and polarized light. Journal of Experimental Biology, 31: 356-375. DOI: https://doi.org/10.1242/jeb.31.3.356
Wajnberg, E., Acosta-Avalos, D., El-Jaick, L.J., Abraçado, L., Coelho, J.L.A., Bakuzis, A.F., Morais, P.C. & Esquivel, D.M.S. (2000). Electron paramagnetic resonance study of the migratory ant Pachycondyla marginata abdomens. Biophysical Journal, 78: 1018-1023. doi: 10.1016/S0006-3495(00)76660-4 DOI: https://doi.org/10.1016/S0006-3495(00)76660-4
Wajnberg, E., Cernicchiaro, G. & Esquivel, D.M.S. (2004). Antennae: the strongest magnetic part of the migratory ant. Biometals, 17: 467-470. doi: 10.1023/B:BIOM.0000029443.93732.62 DOI: https://doi.org/10.1023/B:BIOM.0000029443.93732.62
Wajnberg, E., Acosta-Avalos, D., Alves, O.C., de Oliveira, J.F., Srygley, R.B. & Esquivel, D.M.S. (2010). Magnetoreception in eusocial insects: an update. Journal of the Royal Society Interface. 7: S207-S225. doi: 10.1098/rsif.2009.0526.focus DOI: https://doi.org/10.1098/rsif.2009.0526.focus
Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesank, C., Beebee, T.J.C., Fromentin, J.M., Hoegh-Guldberg, O. & Bairlein, F. (2002). Ecological responses to recent climate change. Nature 416: 389-395. doi: 10.1038/416389a DOI: https://doi.org/10.1038/416389a
Wiltschko, W. & Wiltschko, R. (2005). Magnetic orientation and magnetoreception in birds and other animals. Journal of Comparative Physiology, 191: 675-693. doi: 10.1007/s00359-005-0627-7 DOI: https://doi.org/10.1007/s00359-005-0627-7
Woods, H.A., Dillon, M.E. & Pincebourde, S. (2015). The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. Journal of Thermal Biology, 54: 86-97. doi: 10.1016/j.jtherbio.2014.10.002 DOI: https://doi.org/10.1016/j.jtherbio.2014.10.002
Youk H (2005) Numerical study of quadrupole magnetic traps for neutral atoms: anti-Helmholtz cois and a U-chip. Canadian Undergraduate Physics Journal, 3: 13-18.
Zinck, L., Hora, R.R., Chaline, N. & Jaisson, P. (2008). Low intraspecific aggression level in the polydomous and facultative polygynous ant Ectatomma tuberculatum. Entomologia Experimentalis et Applicata, 126: 211-216. doi: 10.1111/j.1570-7458.2007.00654.x DOI: https://doi.org/10.1111/j.1570-7458.2007.00654.x
Downloads
Published
How to Cite
Issue
Section
License
Sociobiology is a diamond open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).