Bacterial Communities in the Midgut of Ponerine Ants (Hymenoptera: Formicidae: Ponerinae)


  • Tássio Brito de Oliveira São Paulo State University
  • Milene Ferro São Paulo State University
  • Maurício Bacci São Paulo State University
  • Danival José de Souza Tocantins Federal University
  • Renato Fontana Santa Cruz State University
  • Jacques Hubert Charles Delabie Santa Cruz State University and Executive Committee of the Cocoa Farming Plan
  • Aline Silva Santa Cruz State University



16S rRNA, Dinoponera, Odontomachus, Pachycondyla, symbionts


Symbiotic microorganisms are directly related to the ecological success of host insects, influencing many aspects of their biology. The present study is the first to investigate the microbiota associated with ants of the subfamily Ponerinae and aims to identify the bacterial midgut communities of Dinoponera lucida, Pachycondyla curvinodis, Pachycondyla striata, Odontomachus brunneus and Odontomachus bauri. After dissecting the midguts of these ants, DNA was extracted, and the bacterial 16S rRNA gene was amplified via PCR using the universal primers pair 27F/1492R. The obtained PCR products were cloned and sequenced using an ABI 3500 automated sequencer. The sequences were grouped into operational taxonomic units (OTUs) based on a 97% similarity criterion using MOTHUR. The greatest species richness was observed in O. bauri, with 15 OTUs, followed by D. lucida with five OTUs, O. brunneus, with four OTUs, and P. curvinodis and P. striata, both with three OTUs. There were representatives of the phyla Actinobacteria, Proteobacteria, Tenericutes and Firmicutes, including the genera Bartonella, Mesoplasma, Mesorhizobium, Spiroplasma, Wolbachia and Serratia in the guts of the studied Ponerine ants. The low microbial diversity observed given the predatory trophic habits of the species studied suggests that there is selection for these microorganisms, predominantly preserving symbionts with functional roles that are able to colonize this environment. It is also valid to infer that the identified bacteria are predominant in the gut and exhibit mutualistic functions that are important for immunity, reproduction and nutrition; moreover, a subset may be parasites that have considerable impacts on the studied ants.


Download data is not yet available.

Author Biographies

Tássio Brito de Oliveira, São Paulo State University

Department of Biochemistry and Microbiology

Milene Ferro, São Paulo State University

Social Insect Research Center

Maurício Bacci, São Paulo State University

Social Insect Research Center

Renato Fontana, Santa Cruz State University

Department of Biological Sciences

Jacques Hubert Charles Delabie, Santa Cruz State University and Executive Committee of the Cocoa Farming Plan

Myrmecology Laboratory

Aline Silva, Santa Cruz State University

Department of Biological Sciences


Anbutsu, H., Fukatsu, T. (2003) Population dynamics of male-killing and non-male-killing spiroplasma in Drosophila melanogaster. Appl Environ Microbiol 69:1428-1434. doi: 10.1128/AEM.69.3.1428-1434.2003

Bolton, B. (2003) Synopsis and classification of Formicidae. Memoirs of the American Entomological Institute. Gainesville, Florida.

Boursaux-Eude, C., Gross, R. (2000) New insights into symbiotic associations between ants and bacteria. Res Microbiol 151:513-519. doi: 10.1016/S0923-2508(00)00221-7

Broderick, N.A., Raffa, K.F., Goodman, R.M., Handelsman, J. (2004) Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl Environ Microbiol 70:293-300. doi: 10.1128/AEM.70.1.293-300.2004

Caetano, F.H., Bution, M.L., Zara, F.J. (2008) First report of endocytobionts in the digestive tract of ponerine ants. Micron 40:194-197. doi: 10.1016/j.micron.2008.09.004

Caetano, F.H., Zara, F.J., Bution, M.L. (2010) A new strategy of endosymbiont midgut bacteria in ant (Ponerinae). Micron 41:183-186. doi: 10.1016/j.micron.2009.11.007

Cardoza, Y.J., Klepzig, K.D., Raffa, K.F. (2006) Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi. Ecol Entomol 31:636-645. doi: 10.1111/j.1365-2311.2006.00829.x

Connick, W.J., Osbrink, W.L.A., Wright, M.S., Williams, K.S., Daigle, D.J., Boykin, D.L., Lax, A.R. (2001) Increased mortality of Coptotermes formosanus (Isoptera: Thinotermitidae) exposed to eicosanoid biosynthesis inhibitors and Serratia marcescens (Eubacteriales: Enterobacteriaceae). Environ Entomol 30:449-455. doi: 10.1603/0046-225X-30.2.449

Dillon, R.J., Dillon, V.M. (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71-92. doi: 10.1146/annurev.ento.49.061802.123416

Dillon, R.J. Vennard, C.T., Charnley, A.K. (2002) A note: gut bacteria produce components of a locust cohesion pheromone. J Appl Microbiol 92:759–763. doi: 10.1046/j.1365-2672.2002.01581.x

Dillon, R.J., Vennard, C.T., Buckling, A., Charnley, A.K. (2005) Diversity of locust gut bacteria protects against pathogen invasion. Ecol Lett 8:1291-1298. doi: 10.1111/j.1461-0248.2005.00828.x

Dunn, A.K., Stabb, E.V. (2005) Culture-independent characterization of the microbiota of the ant lion Myrmeleon mobilis (Neuroptera: Myrmeleontidae). Appl Environ Microbiol 71:8784-8794. doi: 10.1128/AEM.71.12.8784-8794.2005

Durham, A.M., Kashiwabara, A.Y., Matsunaga, F.T., Ahagon, P.H., Rainone, .F, Varuzza, L., Gruber, A. (2005) EGene: a configurable pipeline generation system for automated sequence analysis. Bioinformatics 21:2812-2813. doi: 10.1093/bioinformatics/bti424

Eilmus, S., Heil, M. (2009) Bacterial associates of arboreal ants and their putative functions in an obligate ant-plant mutualism. Appl Environ Microbiol 75:4324-4332. doi: 10.1128/AEM.00455-09

Feldhaar, H., Straka, J., Krischke, M., Berthold, S.S., Mueller, M.J., Gross, R. (2007) Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia. BMC Biol 5:1-11. doi:10.1186/1741-7007-5-48

Funaro, C.F., Kronauer, D.J.C., Moreau, C.S., Goldman-Huertas, B., Pierce, N.E., Russell, J.A. (2011) Army ants harbor a host-specific clade of Entomoplasmatales bacteria. Appl Environ Microbiol 77:346-350. doi: 10.1128/AEM.01896-10

Giorgini, M., Bernardo, U., Monti, M.M., Nappo, A.G., Gebiola, M. (2010) Rickettsia symbionts cause parthenogenetic reproduction in the parasitoid wasp Pnigalio soemius (Hymenoptera: Eulophidae). Appl Environ Microbiol 76:2589-2599. doi: 10.1128/AEM.03154-09

Hillesland, H., Read, A., Subhadra, B., Hurwitz, I., Mckelvey, R., Ghosh, K., Das, P., Durvasula, R. (2008) Identification of aerobic gut bacteria from kala azar vector, Phlebotomus argentipes: a platform for potential paratransgenic manipulation of sand flies. Am J Trop Med Hyg 79:881-886.

Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X.Y., Fukatsu, T. (2010) Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci USA 107:769-774. doi: 10.1073/pnas.0911476107

Hurst, G.D.D., Jiggins, F.M. (2000) Male-killing bacteria in insects: mechanisms, incidence, and implications. Emerging Infect Dis 6:329-336. doi: 10.3201/eid0604.000402

Jaenike, J.J., Unckless, R., Cockburn, S.N., Boelio, L.M., Perlman, S.J. (2010) Adaptation via Symbiosis: Recent Spread of a Drosophila Defensive Symbiont. Science v. 329, p. 212-215. doi: 10.1126/science.1188235

Jaffe, K., Caetano, F.H., Sánchez, P., Hernández, J.V., Caraballo, L., Vitelli-Flores, J., Monsalve, W., Dorta, B., Lemoine, V.R. (2001) Sensitivity of ant (Cephalotes) colonies and individuals to antibiotic implies feeding symbiosis with gut microorganims. Can J Zool 79:1120-1124. doi: 10.1139/z01-079

Keller, L., Liautard, C., Reuter, M., Brown, W.D., Sundström, L., Chapuisat, M. (2001) Sex ratio and Wolbachia infection in the ant Formica exsecta. Heredity 87:227-233. doi:10.1046/j.1365-2540.2001.00918.x

Kremer, N., Voronin, D., Charif, D., Mavingui, P., Mollereau, B., Vavre, F. (2009) Wolbachia interferes with ferritin expression and iron metabolism in insects. PLoS Pathog 5:1-12. doi: 10.1371/journal.ppat.1000630.

Lacey, L.A., Unruh, R.T., Simkins, H., Thomsen-Archer, K. (2007) Gut bacteria associated with the pacific coast wireworm, Limonius canus, inferred from 16s rDNA sequences and their implications for control. Phytoparasitica 35:479-489. doi: 10.1007/BF03020607

Martins, J., Solomon, S.E., Mikheyev, A.S., Mueller, U.G., Ortiz, A., Bacci, M. (2007) Nuclear mitochondrial-like sequences in ants: evidence from Atta cephalotes (Formicidae: Attini). Insect Mol Biol 16:777-784. doi: 10.1111/j.1365-2583.2007.00771.x

Ouellette, G.D., Fisher, B.L., Girman, D.J. (2006) Molecular systematics of basal subfamilies of ants using 28S rRNA (Hymenoptera: Formicidae). Mol Phylogenet Evol 40:359-369. doi:10.1016/j.ympev.2006.03.017

Polz, M.F., Cavanaugh, C.M. (1998) Bias in template-to-product ratios in multitemplate PCR. Appl. Environ Microbiol 64:3724-3730.

Rajagopal, R (2009) Beneficial interactions between insects and gut bacteria. Indian J Microbiol 49:114-119. doi: 10.1007/s12088-009-0023-z

Rani, A., Sharma, A., Rajagopal, R., Adak, T., Bhatnagar, R.K. (2009) Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector. BMC Microbiol 9:1471-2180. doi: 10.1186/1471-2180-9-96

Reuter, M., Pedersen, J.S., Keller, L. (2005) Loss of Wolbachia infection during colonisation in the invasive Argentine ant Linepithema humile. Heredity 94:364-369. doi: 10.1038/sj.hdy.6800601

Russell, J.A., Moreau, C.S., Goldman-Huertas, B., Fujiwara, M., Lohman, D.J., Pierce, N.E. (2009) Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc Natl Acad Sci USA 106:21236–21241. doi: 10.1073/pnas.0907926106

Sanchez-Contreras, M., Vlisidou, I. (2008) The diversity of insect-bacteria interactions and its applications for disease control. Biotechnol. Genet Eng Rev 25:203-244.

Sanpountzis, P., Zhukova, M., Hansen, L.H., Sørensen, S.J., Schiøtt, M., Boomsma, J.J. (2015) Acromyrmex leaf-cutting ants have simple gut microbiota with nitrogen-fixing potential 81:5527-5537. doi: 10.1128/AEM.00961-15

Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartimann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger, G.G., Van Horn, D.J., Weber, C.F. (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537-7541. doi: 10.1128/AEM.01541-09

Shoemaker, D.D., Ross, K.G., Keller, L., Vargo, E.L., Werren, J.H. (2000) Wolbachia infections in native and introduced populations of fire ants (Solenopsis spp.). Insect Mol Biol 9:661-673. doi: 10.1046/j.1365-2583.2000.00233.x

Souza, D.J., Bézier, A., Depoix, D., Drezen, M., Lenoir, A. (2009) Blochmannia endosymbionts improve colony growth and immune defence in the ant Camponotus Fellah. BMC Microbiol 9:1-8. doi:10.1186/1471-2180-9-29

Thompson, J.D., Higgins, D.G., Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673-4680.

Van Borm, S., Buschinger, A., Boomsma, J.J., Billen, J. (2002) Tetraponera ants have gut symbionts related to nitrogen-fixing root-nodule bacteria. Proc R Soc Lond B Biol Sci 269:2023-2027. doi: 10.1098/rspb.2002.2101

Vettore, A.L., Silva, F.R., Kemper, E.L., Arruda, P. (2001) The libraries that made SUCEST. Genet Mol Biol 24:1-7. doi: 10.1590/S1415-47572001000100002

Xie, J., Vilchez, I., Mateos, M. (2010) Spiroplasma bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma. PLoS ONE v. 5, n.8, p. 1-7. doi: 10.1371/journal.pone.0012149

Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R. (2007) Naive bayesian classifier for rapid assignment of rrna sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261-5267. doi: 10.1128/AEM.00062-07

Watts, T., Haselkorn, T.S., Moran, N.A., Markow, T.A. (2009) Variable incidence of spiroplasma infection in natural populations of Drosophila Species. PLoS One 4:1-6. doi: 10.1371/journal.pone.0005703

Wenseleers, T., Ito, F., Van Borm, S., Huybrechts, R., Volckaert, F., Billen, J. (1998) Widespread occurrence of the micro-organism Wolbachia in ants. Proc R Soc Lond B Biol Sci 265:1447-1452. doi: 10.1098/rspb.1998.0456

Wenseleers, T., Sundström, L., Billen, T. (2002) Deleterious Wolbachia in the ant Formica truncorum. Proc R Soc Lond B Biol Sci 269:623-629. doi: 10.1098/rspb.2001.1927

Wenseleers, T., Billen, J. (2000) No evidence for Wolbachia-induced parthenogenesis in the social Hymenoptera. J Evol Biol 13:277-280. doi: 10.1046/j.1420-9101.2000.00168.x

Werren, J.H., Baldo, L., Clark, M.E. (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741-751. doi:10.1038/nrmicro1969

Wilson, E.O., Hölldobler, B. (2005) The rise of the ants: a phylogenetic and ecological explanation. Proc Natl Acad Sci USA 102:7411-7414. doi: 10.1073/pnas.0502264102




How to Cite

Oliveira, T. B. de, Ferro, M., Bacci, M., Souza, D. J. de, Fontana, R., Delabie, J. H. C., & Silva, A. (2016). Bacterial Communities in the Midgut of Ponerine Ants (Hymenoptera: Formicidae: Ponerinae). Sociobiology, 63(1), 637–644.



Research Article - Ants

Most read articles by the same author(s)

1 2 3 > >>