Population Genetic Structure and Breeding Pattern of Higher Group Termite Globitermes sulphureus (Haviland) (Blattodea:Termitidae)


  • Nur Aizatul Nathasha Khizam Household & Structural Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, Penang, 11800 Minden, MALAYSIA
  • Abdul Hafiz Ab Majid Household & Structural Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, Penang, 11800 Minden, MALAYSIA




Globitermes sulphureus, higher group termite, population genetics, polymorphism, natural regions, metropolitan regions


The subterranean termite Globitermes sulphureus (Blattodea: Termitidae) can be found in tropical regions. We chose seven novel species-specific microsatellite markers to infer the breeding pattern of G. sulphureus based on its colony and population genetic structure in eight selected populations (natural-n = 4 and metropolitan-n = 4) in Kedah and Penang, Malaysia. A strong correlation with their geographical location is shown by the acquired genetic gap for all studied populations from this study. The breeding pattern of family structure and comparisons of estimated F-statistics among G. sulphureus workers suggests 60% of all colonies are mixed families, whereas the remaining are simple families. Average relatedness values within simple and mixed family colonies are similar (r = 0.121). Positive fixation index FST values (FST = 0.086) indicate all eight populations (>500 m apart) have a significantly moderate genetic differentiation and low levels of inbreeding based on the low overall inbreeding coefficient FIT value of 0.391. Furthermore, four populations; Palapes USM (PU), Tmn Astana (TA), Kg Teluk (KT), and Penang National Park (NP), deviate from Hardy–Weinberg equilibrium (HWE, all p = 0.000) and five studied polymorphic loci (GS1, GS10, GS15, GS27 and GS29) are possibly under selection. The findings also reveal signs of a bottleneck effect in two populations: Tikam Batu (TB) and Penang National Park (NP), indicating genetic drift.


Download data is not yet available.

Author Biography

Abdul Hafiz Ab Majid, Household & Structural Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, Penang, 11800 Minden, MALAYSIA

Associate Professor
School of Biological Sciences,
Universiti Sains Malaysia


Ab Majid, A.H. & Ahmad, A.H. (2011). Foraging population, territory and control of Globitermes sulphureus (Isoptera: Termitidae) with fipronil in Penang, Malaysia. Malaysian Applied Biology, 40: 61-65.

Ab Majid, A.H., Ahmad, A.H., Rashid, M.Z.A. & Rawi, C.S.M. (2007). Field efficacy of imidacloprid on Globitermes sulphureus (Isoptera; Termitidae) (Subterranean Termite) in Penang. Journal of Bioscience, 18: 107-112.

Ab Majid, A.H., Kamble, S. & Chen, H. (2018). Breeding Patterns and Population Genetics of Eastern Subterranean Termites Reticulitermes flavipes in Urban Environment of Nebraska, United States. Sociobiology, 65: 506-514. doi: 10.13 102/sociobiology.v65i3.2821

Ab Majid, A.H., Kamble, S. & Miller, N.J. (2013). Colony genetic structure of Reticulitermes flavipes (Kollar) from Natural Populations in Nebraska. Journal of Entomological Science, 48: 222–233.

Aldrich, B.T. & Kambhampati, S. (2007). Population structure and colony composition of two Zootermopsis nevadensis subspecies. Heredity, 99: 443.

Allendorf, F.W. (2017). Genetics and the conservation of natural populations: allozymes to genomes. Molecular Ecology, 26: 420-430.

Aluko, G.A. & Husseneder, C. (2007). Colony dynamics of the Formosan subterranean termite in a frequently disturbed urban landscape. Journal of Economic Entomology, 100: 1037-1046.

Bulmer, M.S., Adams, E.S. & Traniello, J.F.A. (2001). Variation in colony structure in the subterranean termite Reticulitermes flavipes. Behavioral Ecology and Sociobiology, 49: 236-243.

Charlesworth, D. & Charlesworth, B. (1987). Inbreeding depression and its evolutionary consequences. Annual Review of Ecology and Systematics, 18: 237-68. doi: 10.1146/annurev.es.18.110187.001321

Cheng, S., Lee, C.T., Wan, M.N. & Tan, S.G. (2013). Microsatellite markers uncover cryptic species of Odontotermes (Termitoidae: Termitidae) from Peninsular Malaysia. Gene, 518(2): 412-418.

Clément, J.L., Bagneres, A.G., Uva, P., Wilfert, L., Quintana, A., Reinhard, J. & Dronnet, S. (2001). Biosystematics of Reticulitermes termites in Europe: morphological, chemical and molecular data. Insectes Sociaux, 48: 202-215.

DeHeer, C.J., and Vargo. E.L. (2004). Colony genetic organization and colony fusion in the termite Reticulitermes flavipes as revealed by foraging patterns over time and space. Molecular Ecology, 13: 431-441.

DeHeer, C.J., Kutnik, M., Vargo, E.L. & Bagnères, A.G. (2005). The breeding system and population structure of the termite Reticulitermes grassei in southwestern France. Heredity, 95: 408-15.

Dronnet, S., Chapuisat, M., Vargo, E.L., Caroline, L., & Bagnères, A.G. (2005). Genetic analysis of the breeding system of an invasive subterranean termite, Reticulitermes santonensis, in urban and natural habitats. Molecular Ecology, 14: 1311-1320. doi: 10.1111/j.1365-294X.2005.02508.x

Dronnet, S., Perdereau, E., Kutnik, M., Dupont, S. & Bagnères, A.G. (2015). Spatial structuring of the population genetics of a European subterranean termite species. Ecology and Evolution, 5: 3090-3102.

Fougeyrollas, R., Dolejšová, K., Křivánek, J., Sillam-Dussès, D., Roisin, Y., Hanus, R. & Roy, V. (2018). Dispersal and mating strategies in two neotropical soil-feeding termites, Embiratermes neotenicus and Silvestritermes minutus (Termitidae, Syntermitinae). Insectes Sociaux, 65: 251-262. doi: 10.1007/s00040-018-0606-y

Frankham, R. (2005). Genetics and extinction. Biological Conservation, 126: 131-140. doi:10.1016/j.biocon.2005.05.002

Gathorne-Hardy, F.J., Jones, D.T. & Mawdsley, N.A. (2000). The recolonization of the Krakatau islands by termites (Isoptera), and their biogeographical origins. Biological Journal of the Linnaean Society, 71: 251-267. doi: 10.1111/j.1095-8312.2000.tb01257.x

Glass, D. (2017). The social structure of the hazel dormouse (Muscardinus avellanarius) (Doctoral dissertation, University of Brighton).

Goodisman, M.A., & Crozier, R.H. (2002). Population and colony genetic structure of the primitive termite Mastotermes darwiniensis. Evolution, 56: 70-83. doi: 10.1111/j.0014-3820. 2002.tb00850.x

Goudet, J. (2001). FSTAT, a Program to Estimate and Test Gene Diversities and Fixation Indices Version 2.9.3.

Guichoux, E., Lagache, L., Wagner, S., Chaumeil, P., Léger, P., Lepais, O., & Petit, R.J. (2011). Current trends in microsatellite genotyping. Molecular Ecology Resources, 11: 591-611. doi: 10.1111/j.1755-0998.2011.03014.x

Hamilton, M. (2011). Population genetics. John Wiley & Sons.

Hardy, O.J., Charbonnel, N., Fréville, H. & Heuertz, M. (2003). Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation. Genetics, 163: 1467-1482.

Harrison, M. C., Jongepier, E., Robertson, H. M., Arning, N., Bitard-feildel, T., Chao, H. & Bornberg-bauer, E. (2018). Hemimetabolous genomes reveal molecular basis of termite eusociality. Nature Ecology and Evolution, 2. doi: 10.1038/s41559-017-0459-1

Howard, K.J., Johns, P.M., Breisch, N.L. & Thorne, B.L. (2013). Frequent colony fusions provide opportunities for helpers to become reproductives in the termite Zootermopsis nevadensis. Behavioral Ecology and Sociobiology, 67: 1575-1585.

Hussin, N.A. & Ab Majid, A.H. (2017). Inter and intra termites colonies comparisons of gut microbial diversity from worker and soldier caste of Globitermes sulphureus (Blattodea: Termitidae) using 16S rRNA gene. Malaysian Journal of Microbiology, 13: 228-234.

Hussin, N.A., Zarkasi, K.Z. & Ab Majid, A.H. (2018). Characterization of gut bacterial community associated with worker and soldier castes of Globitermes sulphureus Haviland (Blattodea: Termitidae) using 16S rRNA metagenomic. Journal of Asia-Pacific Entomology, 21: 1268-1274. doi: 10.10 16/j.aspen.2018.10.002

Ioannidis, J.P., Ntzani, E.E., Trikalinos, T.A. & Contopoulos-Ioannidis, D.G. (2001). Replication validity of genetic association studies. Nature Genetics, 29: 306. doi :10.1038/ng749

Julio, G., Kiyoto, M., Toru, M. & Tadao, M. (2002). Population structure and genetic diversity in insular populations of nasutitermes takasagoensis (Isoptera: Termitidae) analyzed by AFLP markers. Zoological Science, 19: 1141-1146. doi: 10.2108/zsj.19.1141

Kawecki, T.J., Barton, N.H. & Fry, J.D. (1997). Mutational collapse of fitness in marginal habitats and the evolution of ecological specialisation. Journal of Evolutionary Biology, 10: 407-429.

Kaeuffer, R., Réale, D., Coltman, D.W. & Pontier, D. (2007). Detecting population structure using STRUCTURE software: Effect of background linkage disequilibrium. Heredity, 99: 374. doi: 10.1038/sj.hdy.6801010

Keller, L.F., & Waller, D.M. (2002). Inbreeding effects in wild populations. Trends in Ecology and Evolution, 17: 230-241.

Khizam, N.A.N. & Ab Majid, A.H. (2019). Development and annotation of species-specific microsatellite markers from transcriptome sequencing for a higher group termite, Globitermes sulphureus Haviland (Blattodea: Termitidae). Meta Gene, 20: 100568. doi: 10.1016/j.mgene.2019.100568

Lande, R. (2015). Evolution of phenotypic plasticity in colonizing species. Molecular Ecology, 24: 2038-2045. doi: 10.1111/mec.13037

Lenormand, T. (2002). Gene flow and the limits to natural selection. Trends in Ecology and Evolution, 17: 183-189. doi: 10.1016/S0169-5347(02)02497-7

Luchetti, A., Dedeine, F., Velonà, A. & Mantovani, B. (2013). Extreme genetic mixing within colonies of the wood-dwelling termite Kalotermes flavicollis (Isoptera, Kalotermitidae). Molecular Ecology, 22: 3391-3402. doi: 10.1111/mec.12302

Meirmans, P.G. (2012). AMOVA-Based clustering of population genetic data. Journal of Heredity, 103: 744-750. doi: 10.1093/jhered/ess047

Miller, K.M., Kaukinen, K.H., Beacham, T.D. & Withler, R.E. (2001). Geographic heterogeneity in natural selection on an mhc locus in sockeye salmon. Genetica, 111: 237-257. doi: 10.1023/A:1013716020351

Nei, M. (1987). Molecular evolutionary genetics. Columbia University Press, New-York.

Pamilo, P., Seppä, P. & Helanterä, H. (2016). Population genetics of wood ants. Wood Ant Ecology and Conservation, 7: 51. doi: 10.1017/CBO9781107261402.004

Painter, J.N., Crozier, R.H., Poiani, A., Robertson, R.J. & Clarke, M.F. (2000). Complex social organization reflects genetic structure and relatedness in the cooperatively breeding bell miner, Manorina melanophrys. Molecular Ecology, 9: 1339-1347.

Peakall, R. & Smouse, P. E. (2012). GenAlEx 6.5: Genetic analysis in excel. Population genetic software for teaching and research - an update. Bioinformatics, 28: 2537-2539. doi :10.1111/j.1471-8286.2005.01155.x

Perdereau, E., Bagnères, A.G., Dupont, S. & Dedeine, F. (2010). High occurrence of colony fusion in a European population of the American termite Reticulitermes flavipes. Insectes Sociaux, 57: 393-402.

Pironon, S., Villellas, J., Morris, W.F., Doak, D.F. & García, M.B. (2015). Do geographic, climatic or historical ranges differentiate the performance of central versus peripheral populations. Global Ecology and Biogeography, 24: 611-620. doi: 10.1111/geb.12263

Piry, S., Luikart, G. & Cornuet, J. M. (1999). BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. Journal of Heredity, 90: 502-503.

Powell, J.E., Visscher, P.M. & Goddard, M.E. (2010). Reconciling the analysis of IBD and IBS in complex trait studies. Nature Reviews Genetics, 11, 800-805.

Reddy, P.C. (2017). Unit-3 population genetics. Essentials of physical anthropology. Belmont California; Wadsworth.

Ross, K.G. & Carpenter, J.M. (1991). Phylogenetic analysis and the evolution of queen number in eusocial hymenoptera. Journal of Evolutionary Biology, 4: 117-130. doi: 10.1046/j. 1420-9101.1991.4010117.x

Ross, K.G. (2001). Molecular ecology of social behaviour: analyses of breeding systems and genetic structure. Molecular Ecology, 10: 265-284. doi: 10.1046/j.1365-294X.2001.01191.x

Roussel, V., Koenig, J., Beckert, M. & Balfourier, F. (2004). Molecular diversity in french bread wheat accessions related to temporal trends and breeding programmes. Theoretical and Applied Genetics, 108: 920-930. doi: 10.1007/s00122-003-1502-y

Rousset, F. (2008). Genepop’007: A complete re-implementation of the genepop software for windows and linux. Molecular Ecology Resources, 8: 103-106.

Salanti, G., Sanderson, S. & Higgins, J.P. (2005). Obstacles and opportunities in meta-analysis of genetic association studies. Genetics in Medicine, 7: 13. doi: 10.1097/01.GIM. 0000 151839.12032.1A

Schwalm, D., Epps, C.W., Rodhouse, T.J., Monahan, W.B., Castillo, J.A., Ray, C. & Jeffress, M.R. (2016). Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach. Global Change Biology, 22: 1572-1584. doi: 10.11 11/gcb.13189

Seri Masran, S.N.A. & Ab Majid, A.H. (2018). Isolation and characterization of novel polymorphic microsatellite markers for Cimex hemipterus F. (Hemiptera: Cimicidae). Journal of Medical Entomology, 55: 760-765. doi: 10.1093/jme/tjy008

Taylor, M.S. & Hellberg, M.E. (2003). Genetic evidence for local retention of pelagic larvae in a caribbean reef fish. Science, 299: 107-109. doi: 10.1126/science.1079365

Thompson, G.J., Lenz, M., Crozier, R.H. & Crespi, B.J. (2007). Molecular-genetic analyses of dispersal and breeding behaviour in the Australian termite Coptotermes lacteus: evidence for non-random mating in a swarm-dispersal mating system. Australian Journal of Zoology, 55: 219-227. doi: 10.10 71/ZO07023

Thorne, B.L., Traniello, J.F. A., Adams, E.S. & Bulmer, M. (1999). Reproductive dynamics and colony structure of subterranean termites of the genus Reticulitermes (Isoptera: Rhinotermitidae): a review of the evidence from behavioral, ecological, and genetic studies. Ethology, Ecology and Evolution, 11: 149-169. doi: 10.1080/08927014.1999.9522833

Tong, R.L., Grace, J.K., Mason, M., Krushelnycky, P.D., Spafford, H. & Aihara-Sasaki, M. (2017). Termite species distribution and flight periods on oahu, hawaii. Insects, 8: 58. doi: 10.3390/insects8020058

Vargo, E.L. & Carlson, J.R. (2006). Comparative study of breeding systems of sympatric subterranean termites (Reticulitermes flavipes and R. hageni) in central North Carolina using two classes of molecular genetic markers. Environmental Entomology, 35: 173-187. doi: 10.1603/0046-225X-35.1.173

Vargo, E.L. & Husseneder, C. (2009). Biology of subterranean termites: insights from molecular studies of Reticulitermes and Coptotermes. Annual Review of Entomology, 54: 379-403. doi: 10.1146/annurev.ento.54.110807.090443

Williams, G.C. (2018). Adaptation and natural selection: A critique of some current evolutionary thought. Princeton University Press.

Wlasiuk, G., Garza, J.C. & Lessa, E.P. (2003). Genetic and geographic differentiation in the Rio Negro Tuco-Tuco (Ctenomys rionegrensis): inferring the roles of migration and drift from multiple genetic markers. Evolution, 57: 913-926. doi: 10.1111/j.0014-3820.2003.tb00302.x

Wright, S. (1965). The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 19: 395-420.




How to Cite

Khizam, N. A. N., & Ab Majid, A. H. (2021). Population Genetic Structure and Breeding Pattern of Higher Group Termite Globitermes sulphureus (Haviland) (Blattodea:Termitidae). Sociobiology, 68(1), e5772. https://doi.org/10.13102/sociobiology.v68i1.5772



Research Article - Termites