The Breeding Pattern and Population Genetic Structure of Coptotermes gestroi (Blattodea: Rhinotermitidae) Population in Natural Woodland Habitats
DOI:
https://doi.org/10.13102/sociobiology.v70i4.9360Keywords:
subterranean termite, microsatellite markers, breeding pattern, natural woodland habitat, population genetic structureAbstract
Microsatellite markers are suitable tools for assessing the population structure of eusocial species, especially those with a dynamic breeding system, such as the Asian subterranean termite Coptotermes gestroi (Wasmann) (Blattodea: Rhinotermitidae). Therefore, this study applied seven microsatellite markers to infer the breeding pattern and population genetic structure of C. gestroi found in natural woodland habitats at Universiti Sains Malaysia, Penang, Malaysia. The natural woodland habitat C. gestroi colonies show significant deviation from HWE (all p < 0.05). The uncovered genetic pattern suggested that the C. gestroi colonies presented a combined breeding pattern of mixed- and extended-family colonies with moderate genetic differentiation and elevated inbreeding. In particular, the breeding pattern of C. gestroi colonies was inferred to vary depending on the demographic variation and the age of the colony. Nevertheless, the results revealed comprehensive information on the C. gestroi population structure, habitat-specific to natural woodlands. Furthermore, future studies with exclusive datasets on the population structure of C. gestroi on marginal demography are necessary to enhance the management strategies of this pest species.
Downloads
References
Aguero, C.M., Eyer, P.-A., & Vargo, E.L. (2020). Increased genetic diversity from colony merging in termites does not improve survival against a fungal pathogen. Scientific Reports, 10: 4212.
Aluko, G., & Husseneder, C. (2007). Colony dynamics of the Formosan subterranean termite in a frequently disturbed urban landscape. Journal of Economic Entomology, 100: 1037-1046.
Bakaruddin, N.H., Dieng, H., Sulaiman, S.F., & Ab Majid, A.H. (2018). Evaluation of the toxicity and repellency of tropical plant extract against subterranean termites, Globitermes sulphureus and Coptotermes gestroi. Information Processing in Agriculture, 5: 298-307.
Bankhead-Dronnet, S., Perdereau, E., Kutnik, M., Dupont, S., & Bagnères, A.-G. (2015). Spatial structuring of the population genetics of a European subterranean termite species. Ecology and Evolution, 5: 3090-3102.
Batley, J. (2016). Plant genotyping: Methods and Protocols. Springer, 1245 p.
Bradshaw, C.J.A., & McMahon, C.R. (2008). Fecundity. In S.E. Jørgensen & B. D. Fath (Eds.), Encyclopedia of Ecology (pp. 1535-1543).
Bulmer, M.S. & Traniello, J.F.A. (2002). Foraging range expansion and colony genetic organization in the subterranean termite Reticulitermes flavipes (Isoptera: Rhinotermitidae). Environmental Entomology, 31: 293-298.
Chouvenc, T. (2022). Eusociality and the transition from biparental to alloparental care in termites. Functional Ecology, 36: 3049-3059.
Chouvenc, T., Ban, P.M., & Su, N.-Y. (2022). Life and death of termite colonies, a decades-long age demography perspective. Frontiers in Ecology and Evolution, 10: 911042.
Chouvenc, T., & Su, N.-Y. (2017). Irreversible transfer of brood care duties and insights into the burden of caregiving in incipient subterranean termite colonies. Ecological Entomology, 42: 777-784.
Crosland, M.W.J., & Su, N.-Y. (2006). Mark-recapture without estimating population sizes: a tool to evaluate termite baits. Bulletin of Entomological Research, 96: 99-103.
Curnow, R.N., & Wright, S. (1979). Evolution and the genetics of populations, volume 4: variability within and among natural populations. Biometrics, 35: 359.
Darvill, B., Ellis, J.S., Lye, G.C., & Goulson, D. (2006). Population structure and inbreeding in a rare and declining bumblebee, Bombus muscorum (Hymenoptera: Apidae). Molecular Ecology, 15: 601-611.
Deheer, C.J., & Vargo, E.L. (2004). Colony genetic organization and colony fusion in the termite Reticulitermes flavipes as revealed by foraging patterns over time and space. Molecular Ecology, 13: 431-441.
de Pletincx, N., & Aron, S. (2020). Sociogenetic organization of the red honey ant (Melophorus bagoti). Insects, 11: 755.
Du, Y., Zou, X., Xu, Y., Guo, X., Li, S., Zhang, X., Su, M., Ma, J., & Guo, S. (2016). Microsatellite loci analysis reveals post-bottleneck recovery of genetic diversity in the tibetan antelope. Scientific Reports, 6: 35501.
Evans, T.A. (2021). Predicting ecological impacts of invasive termites. Current Opinion in Insect Science, 46: 88-94.
Evans, T., Forschler, B., & Grace, J. (2012). Biology of invasive termites: A Worldwide Review. Annual Review of Entomology, 58: 455-474.
Eyer, P.-A., Moran, M.N., Richardson, S., Shults, P.T., Liu, K.-L.K., Blumenfeld, A.J., Davis, R., & Vargo, E.L. (2023). Comparative genetic study of the colony structure and colony spatial distribution between the higher termite Amitermes parvulus and the lower, subterranean termite Reticulitermes flavipes in an urban environment. BioRxiv, 2022.12.27.522004.
Foll, M., & Gaggiotti, O. (2006). Identifying the environmental factors that determine the genetic structure of populations. Genetics, 174: 875-891.
Garnier-Géré, P., & Chikhi, L. (2013). Population subdivision, Hardy–Weinberg equilibrium and the Wahlund effect. In eLS, John Wiley & Sons, Ltd (Ed.).
Goudet, J. (2005). HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Molecular Ecology Notes, 5: 184-186.
Guaraldo, A.C., & Costa-Leonardo, A.M. (2009). Preliminary fusion testing between whole young colonies of Coptotermes gestroi (Isoptera: Rhinotermitidae). Sociobiology, 53: 767-774.
Huang, Q., Li, G., Husseneder, C., & Lei, C. (2013). Genetic analysis of population structure and reproductive mode of the termite Reticulitermes chinensis Snyder. PLoS ONE, 8: e69070.
Husseneder, C., & Grace, J.K. (2001). Evaluation of DNA fingerprinting, aggression tests, and morphometry as tools for colony delineation of the Formosan subterranean termite. Journal of Insect Behavior, 14: 173-186.
Jain, A., Pandit, M.K., Elahi, S., Jain, A., Bhaskar, A., & Kumar, V. (2000). Reproductive behaviour and genetic variability in geographically isolated populations of Rhododendron arboreum (Ericaceae). Current Science, 79: 1377-1381.
Johnson, O., Ribas, C.C., Aleixo, A., Naka, L.N., Harvey, M.G., & Brumfield, R.T. (2023). Amazonian birds in more dynamic habitats have less population genetic structure and higher gene flow. Molecular Ecology, 32: 2186-2205.
Kalinowski, S., Taper, M., & Marshall, T. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity. Molecular Ecology, 16: 1099-1106.
Kim, K.S., & Sappington, T.W. (2013). Microsatellite data analysis for population genetics. In S.K. Kantartzi (Ed.), Microsatellites: Methods and Protocols (pp. 271–295).
Khizam, N., & Ab Majid, A.H. (2021). Population genetic structure and breeding pattern of higher group termite Globitermes sulphureus (Haviland) (Blattodea: Termitidae). Sociobiology, 68: e5772.
Kozyra, K.B., Melosik, I., & Baraniak, E. (2015). Genetic diversity and population structure of Polistes nimpha based on DNA microsatellite markers. Insectes Sociaux, 62: 423-432.
Lachance, J. (2016). Hardy–Weinberg equilibrium and random mating. In R. M. Kliman (Ed.), Encyclopedia of Evolutionary Biology (pp. 208-211).
Lim, L., Ab Majid, A.H., & Cheng, S. (2021). Isolation of microsatellite markers from de novo whole genome sequences of Coptotermes gestroi (Wasmann) (Blattodea: Rhinotermitidae). Data, 6: 40.
Low, V.L., Adler, P.H., Takaoka, H., Ya’cob, Z., Lim, P.E., Tan, T.K., Lim, Y.A.L., Chen, C. D., Norma-Rashid, Y., & Sofian-Azirun, M. (2014). Mitochondrial DNA markers reveal high genetic diversity but low genetic differentiation in the black fly Simulium tani Takaoka & Davies along an elevational gradient in Malaysia. PLoS ONE, 9: e100512.
Majid, A.H.A., Kamble, S.T., & Miller, N.J. (2013). Colony genetic structure of Reticulitermes flavipes (Kollar) from natural populations in Nebraska. Journal of Entomological Science, 48: 222-233.
Marquina, D., Buczek, M., Ronquist, F., & Łukasik, P. (2020). The effect of ethanol concentration on the morphological and molecular preservation of insects for biodiversity studies. PeerJ, 9: e10799.
Myles, T.G. (1999). Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology, 33: 1-91.
Peakall, R., & Smouse, P.E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics, 28: 2537-2539.
Perdereau, E., Baudouin, G., Bankhead-Dronnet, S., Chevalier, Z., Zimmermann, M., Dupont, S., Dedeine, F., & Bagnères, A.-G. (2019). Invasion dynamics of a termite, Reticulitermes flavipes, at different spatial scales in France. Insects, 10: 30.
Perdereau, E., Bagnères, A.-G., Vargo, E., Baudouin, G., Xu, Y., Labadie, P., Dupont, S., & Dedeine, F. (2015). Relationship between invasion success and colony breeding structure in a subterranean termite. Molecular Ecology, 24: 2125-2142.
Rousset, F. (2017). Genepop Version 4.7. 0. Institut des Sciences de l’Evolution de Montpellier, Université de Montpellier.
Seri Masran, S., & Ab Majid, A.H. (2019). Population genetic structure and breeding pattern of Cimex hemipterus (F.) (Hemiptera: Cimicidae) in Malaysia. Journal of Medical Entomology, 56: 94-952.
Smith, S., Joss, T., & Stow, A. (2011). Successful development of microsatellite markers in a challenging species: the horizontal borer Austroplatypus incompertus (Coleoptera: Curculionidae). Bulletin of Entomological Research, 101: 551-555.
Tho, Y.P. (1974). The termite problem in plantation forestry in Peninsula Malaysia. The Malaysian Forester, 37: 278-283.
Thompson, G., Lenz, M., Crozier, R., & Crespi, B. (2007). Molecular-genetic analyses of dispersal and breeding behaviour in the Australian termite Coptotermes lacteus: evidence for non-random mating in a swarm-dispersal mating system. Australian Journal of Zoology, 55: 219-227.
Thorne, B.L., & Traniello, J.F.A. (2003). Comparative social biology of basal taxa of ants and termites. Annual Review of Entomology, 48: 283-306.
Van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M., & Shipley, P. (2004). MICRO‐CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4: 535-538.
Vargo, E.L. (2019). Diversity of termite breeding systems. Insects, 10: 52.
Vargo, E.L., & Carlson, J.R. (2006). Comparative study of breeding systems of sympatric subterranean termites (Reticulitermes flavipes and R. hageni) in Central North Carolina using two classes of molecular genetic markers. Environmental Entomology, 35: 173-187.
Vargo, E.L., & Husseneder, C. (2009). Biology of subterranean termites: insights from molecular studies of Reticulitermes and Coptotermes. Annual Review of Entomology, 54: 379-403.
Vellupillai, N.M., Lim, L.Y., & Majid, A.H.A. (2023). Polymorphism study of novel microsatellite markers to determine population genetic structure of Coptotermes gestroi (Blattodea: Rhinotermitidae) from infested urban buildings. Gene Reports, 31: 101768.
Vieira, M.L.C., Santini, L., Diniz, A.L., & Munhoz, C. de F. (2016). Microsatellite markers: what they mean and why they are so useful. Genetics and Molecular Biology, 39: 312-328.
Wan Umar, W. & Ab Majid, A.H. (2020). Efficacy of minimum application of chlorfluazuron baiting to control urban subterranean termite populations of Coptotermes gestroi (Wasmann) (Blattodea: Rhinotermitidae). Insects, 11: 569.
Weir, B.S., & Hill, W.G. (2002). Estimating F-Statistics. Annual Review of Genetics, 36: 721-750.
Yeap, B.-K., Othman, A.S., & Lee, C.-Y. (2011). Genetic analysis of population structure of Coptotermes gestroi (Isoptera: Rhinotermitidae) in native and introduced populations. Environmental Entomology, 40: 470-476.
Zhang, M., & Evans, T. A. (2017). Determining urban exploiter status of a termite using genetic analysis. Urban Ecosystems, 20: 535-545.
Zima, J., Lebrasseur, O., Borovanska, M., & Janda, M. (2016). Identification of microsatellite markers for a worldwide distributed, highly invasive ant species Tapinoma melanocephalum (Hymenoptera: Formicidae). European Journal of Entomology, 113: 409-414.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Naveeta Vellupillai, Abdul Hafiz Ab Majid

This work is licensed under a Creative Commons Attribution 4.0 International License.
Sociobiology is a diamond open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).