Genetic diversity and phylogenetic relationship of higher termite Globitermes sulphureus (Haviland)(Blattodea:Termitidae)
DOI:
https://doi.org/10.13102/sociobiology.v68i2.5911Keywords:
Genetic diversity, phylogenetic, termite, Globitermes sulphureus, COIIAbstract
The subterranean higher termite Globitermes sulphureus (Blattodea: Termitidae), is a peridomestic forager and regarded as a significant pest in Southeast Asia. In this study, the populations of G. sulphureus from the USM main campus area were investigated based on partial sequences of the mitochondrial COII gene. The genetic diversity was determined using DnaSP v5 software while the phylogenetic relationship was defined using Neighbor-joining (NJ) and maximum likelihood (ML) methods using Molecular Evolutionary Genetics Analysis (MEGA 7) software. A total of 2 haplotypes were detected among the 5 sample sequences that differed by two variable sites. In addition, both phylogenetic trees gave similar topology and supporting the results from haplotype diversity. Based on the haplotype diversity and molecular phylogeny, it is proposed that geographic isolation and lack of human activities have contributed to the neutral genetic diversity of G. sulphureus.
Downloads
References
Ab Majid, A.H. & Ahmad, A.H. (2009). The status of subterranean termite infestation in Penang, Seberang Perai and Kedah, Malaysia. Malaysia Application Biology, 38: 37-48.
Ab Majid, A.H. & Ahmad, A.H. (2011). Foraging population, territory and control of Globitermes sulphureus (Isoptera: Termitidae) with Fipronil in Penang, Malaysia. Malaysian Applied Biology, 40: 61-65.
Ab Majid, A.H., Shen, E.Y., Heng, C.Y. & Foong, L.C. (2018). Genetic variation, diversity and molecular phylogenetic of higher group termite Macrotermes carbonarious Hagen (Blattodea: Termitidae). Malaysian Applied Biology, 47: 97-104.
Ahmad, M. (1965). Termites (Isoptera) of Thailand. American Museum of Natural History, 131: 1-114.
Aiman Hanis, J., Abu Hassan, A., Nurita, A.T. & Che Salmah, M.R. (2014). Community structure of termites in a hill dipterocarp forest of Belum- Temengor Forest Complex, Malaysia: Emergence of pest species. Raffles Bulletin of Zoology, 62: 3-11.
Aly, S.M., Wen, J., Wang, X. & Cai, J. (2012). Cytochrome oxidase II gene “short fragment” applicability in identification of forensically important insects. Romanian Journal of Legal Medicine, 20: 231-236. doi: 10.4323/rjlm.2012.231
Austin, J.W., Allen, L.S., Solorzano, C., Magnus, R. & Scheffrahn, R.H. (2012). Mitochondrial DNA genetic diversity of the drywood termites Incisitermes minor and I. snyderi (Isoptera: Kalotermitidae). Florida Entomologist, 95: 75-81. doi: 10.1653/024.095.0112
Bordereau, C., Robert, A., Van Tuyen, V. & Peppuy, A. (1997). Suicidal defensive behaviour by frontal gland dehiscence in Globitermes sulphureus Haviland soldiers (Isoptera). Insectes Sociaux, 44: 289-296. doi: 10.1007/s000400050049
Bourguignon, T., Lo, N., Cameron, S.L., Sobotn, J., Hayashi, Y., Shigenobu, S., Watanabe, D., Roisin, Y., Miura, T. & Evans, T.A. (2014). The evolutionary history of termites as inferred from 66 mitochondrial genomes. Molecular Biology and Evolution, 32: 406-421. doi: 10.1093/molbev/msu308
Bujang, N., Harrison, N. & Su, N. (2014). A phylogenetic study of endo-beta-1,4-glucanase in higher termites. Insectes Sociaux, 61: 29-40. doi: 10.1007/s00040-013-0321-7
Dupont, L., Roy, V., Bakkali, A. & Harry, M. (2009). Genetic variability of the soil-feeding termite Labiotermes labralis (Termitidae, Nasutitermitinae) in the Amazonian primary forest and remnant patches. Insect Conservation and Diversity, 2: 53-61. doi: 10.1111/j.1752-4598.2008.00040.x
Ellegren, H. & Galtier, N. (2016). Determinants of genetic diversity. Nature Publishing Group, 17: 422-433. doi: 10.1038/ nrg.2016.58
Fellsenstein, J. (1985). Confidence limits on phylogenies : An approach using the bootstrap. Evolution, 39: 783-791. doi: 10.3389/fimmu.2015.00048
Fouks, B. & Lattorff, H.M.G. (2016). Contrasting evolutionary rates between social and parasitic bumblebees for three social effect genes. Frontiers in Ecology and Evolution, 4: 1-9. doi: 10.3389/fevo.2016.00064
Frati, F., Simon, C., Sullivan, J. & Swofford, D.L. (1997). Evolution of the mitochondrial cytochrome oxidase II gene in Collembola. Journal of Molecular Evolution, 44: 145-158. doi: 10.1007/PL00006131
Hasegawa, M., Kishino, H. & Yano, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22: 160-174. doi: 10.1007/BF02101694
Husseneder, C., Simms, D.M., Delatte, J.R., Wang,C., Grace, J.K. & Vargo, E.L. (2012). Genetic diversity and colony breeding structure in native and introduced ranges of the Formosan subterranean termite, Coptotermes formosanus. Biological Invasions, 14: 419-437. doi: 10.1007/s10530-011-0087-7
Hussin, N.A. & Ab Majid, A.H. (2017). Inter and intra termites colonies comparisons of gut microbial diversity from worker and soldier caste of Globitermes sulphureus (Blattodea: Termitidae) using 16S rRNA gene. Malaysian Journal of Microbiology, 13: 228-234.
Hussin, N.A., Zarkasi, K.Z. & Ab Majid, A.H. (2018). Characterization of gut bacterial community associated with worker and soldier castes of Globitermes sulphureus Haviland (Blattodea: Termitidae) using 16S rRNA metagenomic. Journal of Asia-Pacific Entomology, 21: 1268-1274. doi: 10.1016/J.ASPEN.2018.10.002
Keller, I., Bensasson, D. & Nichols, R.A. (2007). Transition-transversion bias is not universal: A counter example from grasshopper pseudogenes. PLoS Genetics, 3: 0185-0191. doi: 10.1371/journal.pgen.0030022
Khizam, N.A.N. & Ab Majid, A.H. (2019). Development and annotation of species-specific microsatellite markers from transcriptome sequencing for a higher group termite, Globitermes sulphureus Haviland (Blattodea: Termitidae). Meta Gene, 20: 1-6. doi: 10.1016/j.mgene.2019.100568
Khizam, N.A.N. & Ab Majid, A.H. (2021). Population genetic structure and breeding pattern of higher group termite Globitermes sulphureus Haviland (Blattodea: Termitidae). Sociobiology, 68: e5772. doi: 10.13102/sociobiology.v68i1.5772
Kumar, S., Stecher, G. & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33: 1870-1874. doi: 10.1093/molbev/msw054
Kuswanto, E., Ahmad, I. & Dungani, R. (2015). Threat of subterranean termites attack in the Asian countries and their control: A review. Asian Journal of Applied Sciences, 8: 227-239. doi: 10.3923/ajaps.2015.227.239
Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., Mcgettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson,J.D., Gibson, T.J. & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23: 2947-2948. doi: 10.1093/bioinformatics/btm404
Lee, C.Y., Ngee, P.S., Lee, L.C. & Na, J.P.S. (2004). Survey of termite diversity in Pantai Acheh Forest Reserve, Penang Island, Malaysia. Jurnal Biosains, 15: 91-99.
Lee, C.Y., Yap, J., Ngee, P.S. & Jaal, Z. (2003). Foraging colonies of a higher mound-building subterranean termite, Globitermes sulphureus (Haviland) in Malaysia. Japanese Journal of Environmental Entomology and Zoology, 14: 105-112.
Lee, C.Y., Vongkaluang, C. & Lenz, M. (2007). Challenges to subterranean termite management of multi-genera faunas in Southeast Asia and Australia. Sociobiology, 50: 213-221.
Leniaud, L., Dedeine, F., Pichon, A., Dupont, S. & Bagnères, A.G. (2010). Geographical distribution, genetic diversity and social organization of a new European termite, Reticulitermes urbis (Isoptera: Rhinotermitidae). Biological Invasions, 12: 1389-1402. doi: 10.1007/s10530-009-9555-8
Meng, L.L., Badarulzaman, N., Mui, L.Y., Awang, H. & Ta, T.L. (2002). The university in the garden, policies & guidelines (Vol. 1).
Murthy, S., Rajeshwari, K. & Jalali, T. (2015). Genetic diversity among Indian termites based on mitochondrial 12S rRNA gene. European Journal of Zoological Research, 4: 1-6.
Nei, M. & Kumar, S. (2000). Molecular evolution and phylogenetics. Oxford University Press, 333 p
Neoh, K.B., Jalaludin, N.A. & Lee, C.Y. (2011). Elimination of field colonies of a mound-building termite Globitermes sulphureus (Isoptera: Termitidae) by bistrifluron bait. Journal of Economic Entomology, 104: 607-613. doi: 10.1603/EC10161
Ngee, P.S. & Lee, C.Y. (2002). Colony characterization of a mound-building subterranean termite, Globitermes sulphureus (Isoptera: Termitidae) using modified single-mark recapture technique. Sociobiology, 40: 525-532.
Notredame, C., Higgins, D.G. & Heringa, J. (2000). T-Coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology, 302: 205-217. doi: 10.1006/jmbi.2000.4042
Ohkuma, M., Yuzawa, H., Amornsak, W., Sornnuwat, Y., Takematsu, Y., Yamada, A., Vongkaluang, C., Sarnthoy, O., Kirtibutr, N., Noparatnaraporn, N., Kudo, T. & Inoue, T. (2004). Molecular phylogeny of Asian termites (Isoptera) of the families Termitidae and Rhinotermitidae based on mitochondrial COII sequences. Molecular Phylogenetics and Evolution, 31: 701-710. doi: 10.1016/j.ympev.2003.09.009
Pinzon, O.P. & Houseman, R.M. (2009). Species diversity and intraspecific genetic variation of Reticulitermes (Isoptera: Rhinotermitidae) subterranean termites in Woodland and Urban Environments of Missouri. Annals of the Entomological Society of America, 102: 868-880. doi: 10.1603/008.102.0513
Plotkin, J. B. & Kudla, G. (2011). Synonymous but not the same: the causes and consequences of codon bias. National Review of Genetics, 12: 32-42. doi: 10.1038/nrg2899.Synonymous
Rust, M.K. & Su, N.Y. (2012). Managing social insects of urban importance. Annual Review of Entomology, 57: 355-375. doi: 10.1146/annurev-ento-120710-100634
Saitou, N. & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4: 406-425. doi: 10.1093/oxfordjournals.molbev.a040454
Singla, M., Goyal, N., Sharma, R. & Singla, N. (2016). Reconstructing phylogenetic relationship among Indian termite species inferred from COII gene sequences ( lattodea: Isoptera : Termitidae ). Journal of Entomology and Zoology Studies, 4: 1-7.
Singla, M., Goyal, N., Sobti, R.C. & Sharma, V.L. (2015). Estimating molecular phylogeny of some Indian termites combining partial COI sequences, Journal of Entomology and Zoology Studies, 3: 213-218.
Szalanski, A.L., Austin, J.W. & McKern, J.A. (2008). Genetic diversity of Reticulitermes termites (Isoptera Rhinotermitidae) from Lake Wedington, Arkansas. Sociobiology, 52: 95-106.
Thompson, G.J., Miller, L.R., Lenz, M. & Crozier, R. H. (2000). Phylogenetic analysis and trait evolution in Australian lineages, of drywood termites (Isoptera, Kalotermitidae). Molecular Phylogenetics and Evolution, 17: 419-429. doi: 10.1006/mpev.2000.0852
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. (1997). The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25: 4876-4882. doi: 10.1093/nar/25.24.4876
Yeap, B., Othman, A.S., Lee, V.S. & Lee, C. (2007). Genetic relationship between Coptotermes gestroi and Coptotermes vastator (Isoptera : Rhinotermitidae ). Journal of Economic Entomology, 100: 467-474.
Zwart, M.P., Schenk, M.F., Hwang, S., Koopmanschap, B., de Lange, N., van de Pol, L., Nga, T.T.T., Szendro, I.G., Krug, J. & de Visser, J.A.G.M. (2018). Unraveling the causes of adaptive benefits of synonymous mutations in TEM-1 β-lactamase. Heredity, 121: 406-421. doi: 10.1038/s41437-018-0104-z
Downloads
Published
How to Cite
Issue
Section
License
Sociobiology is a diamond open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).