Contribution of Omnidirectional Flight Traps to Assess the Ant (Hymenoptera: Formicidae) Diversity in an Agroforestry System


  • Elmo Borges A. Koch Universidade Estadual de Feira de Santana, PPG em Ecologia e Evolução, Feira de Santana-BA, Brazil
  • Priscila Santos Silva CEPLAC/Centro de Pesquisas do Cacau, Laboratório de Mirmecologia, Km 22, rodovia Ilhéus-Itabuna (BR-415), Ilhéus-BA, Brazil
  • Alexandre Arnhold Universidade Federal do Sul da Bahia, Centro de Formação em Ciências Agroflorestais, Ilhéus, BA, Brazil
  • Edie Carvalho Ribeiro Ferraz CEPLAC/Centro de Pesquisas do Cacau, Laboratório de Mirmecologia, Km 22, rodovia Ilhéus-Itabuna (BR-415), Ilhéus-BA, Brazil.
  • Maurice Leponce Royal Belgian Institute of Natural Sciences, Biodiversity Monitoring and Assessment, Brussels, Belgium
  • Cléa dos Santos F. Mariano Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Laboratório de Artrópodes Sociais. Ilhéus, BA, Brazil
  • Jacques H. Charles Delabie CEPLAC/Centro de Pesquisas do Cacau, Laboratório de Mirmecologia, Km 22, rodovia Ilhéus-Itabuna (BR-415) & Universidade Estadual de Santa Cruz, Departamento de Ciências Agrárias e Ambientais, Ilhéus-BA, Brazil



cocoa agroecosystem, biodiversity, Theobroma cacao, interception trap, canopy, Malaise


The Malaise trap is widely used for monitoring the diversity of flying insects. The omnidirectional model (Omnidirectional flight trap) is well known when hung in the understory, where it divides the sampling of these insects into two interception strata, a lower and an upper one. In general, the interest in using this trap type is because it allows to collect organisms with distinct flight behaviors to be discriminated against. Here, we investigated what information this trap can provide from samples of canopy ants and winged individuals as workers. We evaluated the sampling efficiency of the ant fauna, comparing the collection strata of this trap in a cocoa agroforestry system. To collect the ants, 40 traps were installed near an equivalent number of shading trees in a cacao plantation. A total of 374 specimens of ants belonging to 94 species or morphospecies of Formicidae were captured. Of these, 44 species were represented by alates of both sexes, while workers represented 68 species. A significant difference in the average number of ant species, both winged individuals and workers, was observed according to the trap interception stratum. A greater number of alates were collected in the upper stratum than in the lower one. An inverse pattern was observed for workers. However, we do not observe any difference according to the trap interception stratum when focusing on the whole ant diversity independently from their cast. On the contrary, the pattern of species composition comparing the two trap interception strata varied according to the ant casts. The Malaise traps are also interesting because they provide valuable information about the activity of canopy ants, such as foraging (workers) and mating flight (alates: height, orientation, time, according to the schedule of trap use).


Download data is not yet available.


Achterberg, K.V. (2009). Can Townes type Malaise traps be improved? Some recent developments. Entomologische Berichten, 69: 129-135.

Aguiar, A.P. & Santos, B.F. (2010). Discovery of potent, unsuspected sampling disparities for Malaise and Möricke traps, as shown for Neotropical Cryptini (Hymenoptera, Ichneumonidae). Journal of Insect Conservation, 14: 199-206.

Agosti, D.M., Alonso, L.E. & Schultz, R. (2000). Ants: Standard Methods for Measuring and Monitoring Biodiversity. Washington: Smithsonian Institution Press. 280p.

Alexander, B. (2000). Sampling methods for phlebotomine sandflies. Medical and Veterinary Entomology, 14: 109-122.

Alonso, L.E. (2000). Ants as Indicator of Diversity. In: Agosti, D., Majer, J.D., Alonso, L.L. & Schultz, T.R. (eds) Ants: Standard methods for measuring and monitoring biodiversity. Washington: Smithsonian Institution Press. 280p.

Alonso, L.E. & Agosti, D. (2000). Biodiversity Studies, Monitoring, and Ants: An Overview. In: Agosti, D., Majer, J.D., Alonso, L.E., Schultz, T.R. (eds) Ants: Standard Methods for Measuring and Monitoring Biodiversity. Washington, DC, Smithsonian Institution Press. pp.1-8.

Alvim, R. (1989). O cacaueiro (Theobroma cacao L.) em sistemas agrossilviculturais. Agrotrópica 1(2): 89-103.

Armbruster, P., Hutchinson, R.A. & Cotgrave, P. (2002). Factors influencing community structure in a South American tank bromeliad fauna. Oikos, 96: 225-234.

Arnhold, A., Koch, E.B.A., Nunes, L.O., Silva, P.S., Santos-Neto, E.A., Delabie, J.C.H. & Mariano, C.S.F. (2022). Uso da armadilha de tipo malaise omnidirecional no monitoramento de insetos num agrossistema cacaueiro. Agrotrópica, 34: 189-198.

Bakker, L., Werf, V.D.W. & Bianchi, F.J.J.A. (2022). Sweep netting samples, but not sticky trap samples, indicate beneficial arthropod abundance is negatively associated with landscape wide insecticide use. Journal of Applied Ecology, 59: 942-952.

Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19: 134-143.

Baselga, A., Orme C.D.L. (2012). Betapart: An R package for the study of beta diversity. Methods in Ecology and Evolution, 3: 808-812.

Basset, Y. (1988). A composite interception trap for sampling arthropods in tree canopies. Australian Journal of Entomology, 27: 213-219.

Basset, Y., Cizek, L., Cuénoud, P., Didham, R.K., Guilhaumon, F., Missa, O., Novotny, V., Odegaard, F., Roslin, T., Schmidl, J., Tishechkin, A.K., Winchester, N.N., Roubik, W.D., Aberlenc, H., Bail, J., Barrios, H., Bridle, J.R., Castaño-Meneses, G., Corbara, B., Curletti, G., Rocha, W.D., Bakker, D., Delabie, J.H.C., Dejean, A., Fagan, L.L., Floren, A., Kitching, R.L., Medianero, E., Miller, S.E., Oliveira, E.G., Orivel, J., Pollet, M., Rapp, M., Ribeiro, S.P., Roisin, Y., Schmidt, J.B., Sørensen, L. & Leponce, M. (2012). Arthropod diversity in a tropical forest. Science, 338: 1481-1484.

Basset, Y., Cizek, L., Cuénoud, P., Didham, R.K., Novotny, V., Odegaard, F., Roslin, T., Tishechkin, A.K., Schmidl, J., Winchester, N.N., Roubik, D.W., Aberlenc, H., Bail, J., Barrios, H., Bridle, J.R., Castaño-Meneses, G., Corbara, B., Curletti, G., Rocha, W.D., Bakker, D., Delabie, J.H.C., Dejean, A., Fagan, L.L., Floren, A., Kitching, R.L., Medianero, E., Oliveira, E.G., Orivel, J., Pollet, M., Rapp, M., Ribeiro, S., Roisin, Y., Schmidt, J.B., Sørensen, L., Lewinsohn, T.M., Leponce, M. (2015). Arthropod distribution in a tropical rainforest: tackling a four dimensional puzzle. Plos One, 10: 1-22.

Campiolo, S., Rosario, N.A., Strenzel, G.M.R., Feitosa, R. & Delabie, J.H.C. (2015). Conservação de Poneromorfas no Brasil. In: Delabie, J.H.C., Feitosa, R.M., Serrão, J.E., Mariano, C.S.F. & Majer, J.D. (eds). As formigas Poneromorfas do Brasil. Editus, Ilhéus-BA, Brasil, pp. 447-462.

Campos, R.I., Vasconcelos, H.L., Ribeiro, S.P., Neves, F.S. & Soares, J.P. (2006). Relationship between tree size and insect assemblages associated with Anadenanthera macrocarpa. Ecography, 29: 442-450.

Campos, W.G., Pereira, D.B.S. & Schoereder, J.H. (2000). Comparison of the Efficiency of Flight–Interception Trap Models for Sampling Hymenoptera and Other Insects. Anais da Sociedade Entomológica do Brasil, 29: 381-389.

Colwell, R.K. (2013). Estimates: Statistical estimation of species richness and shared species from samples. Version 9. .

Dantas, Y.K.L.A. (2008). Records of Mantodea (Insecta) collected with light trap at 45 meters height over an Amazon forest canopy, at ZF-2 nucleus, Manaus, Brazil. Acta Amazonica, 38: 317-320.

DaRocha, W.D., Ribeiro, S.P., Neves, F.S., Fernandes, G.W., Leponce, M. & Delabie, J.H.C. (2015). How does bromeliad distribution structure the arboreal ant assemblage (Hymenoptera: Formicidae) on a single tree in a Brazilian Atlantic forest agroecosystem? Myrmecological News, 21: 83-92.

DaRocha, W.D., Neves, F.S., Dáttilo, W. & Delabie, J.H.C. (2016). Epiphytic bromeliads as key components for maintenance of ant diversity and ant–bromeliad interactions in agroforestry system canopies. Forest Ecology and Management, 372: 128-136.

DaRocha, W., Antoniazzi, R., Delabie, J.H.C., Schroth, G., Fernandes, G.W. & Neves, F.S. (2021). Disentangling the factors that shape bromeliad and ant communities in the canopies of cocoa agroforestry and preserved Atlantic Forest. Biotropica, 53: 1698-1709.

Davidson, D.W., Cook, S.C., Snelling, R.R. & Chua, T.H. (2003). Explaining the abundance of ants in lowland tropical rainforest canopies. Science, 300: 969-1072.

Davis, A.J., Holloway, J.D., Huijbregts, H., Krikken, J. & Kirk-Spriggs, A.H. (2001). Dung beetles as indicators of change in the forests of northern Borneo. Journal of Applied Ecology, 38: 593-616.

Dejean, A., Labrière, N., Touchard, A., Petitclerc, F. & Roux, O. (2014). Nesting habits shape feeding preferences and predatory behavior in an ant genus. Naturwissenschaften, 101: 323-330.

Del-Claro, K., Rico-Gray, V., Torezan-Silingardi, H.M., Alves-Silva, E., Fagundes, R., Lange, D., Dáttilo, W., Vilela, A.A., Aguirre, A. & Rodríquez-Morales, D. (2016). Loss and gains in ant–plant interactions mediated by extrafloral nectar: fidelity, cheats, and lies. Insect Sociaux, 63: 207-221.

Delabie, J.H.C. (2001). Trophobiosis between Formicidae and Hemiptera (Sternorrhyncha and Auchenorrhyncha): an overview. Neotropical Entomology, 30: 501-516.

Delabie, J.H.C., Argolo, A.J.S, Jahyny, B., Cassano, C.R., Jared, C., Mariano, C.S.F., Faria, D.M., Schroth, G., Oliveira, L.C., Bede, L.C., Moura, R.T., Lacau, S. & DaRocha, W.D. (2011). Paisagem cacaueira no sudeste da Bahia: desafios e oportunidades para a conservação da diversidade animal no século XXI. Agrotrópica, 23: 107-114.

Delabie, J.H.C., Jahyny, B., Nascimento, I.C., Mariano, C.S.F., Lacau, S., Campiolo, S., Philpott, S.M. & Leponce, M. (2007). Contribution of cocoa plantations to the conservation of native ants (Insecta: Hymenoptera: Formicidae) with a special emphasis on the Atlantic forest fauna of southern Bahia, Brazil. Biodiversity and Conservation, 16: 2359-2384.

Delabie, J.H.C., Koch, E., Dodonov, P., Caitano, B., DaRocha, W., Jahyny, B., Leponce, M., Majer, J. & Mariano, C.S.F. (2021). Sampling and analysis methods for ant diversity assessment. In: Santos, J.C. & Fernandes, G.W. (eds) Measuring Arthropod Biodiversity - A Handbook of Sampling Methods. Springer, Cham. pp. 13-54.

Delabie, J.H.C. & Reis, Y.T. (2000). Sympatry and mating flight synchrony of three species of Cylindromyrmex (Hymenoptera, Formicidae) in southern Bahia, Brazil, and the importance of Malaise trap for rare ants’ inventory. Revista Brasileira de Entomologia, 44: 109-110.

Delabie, J.H.C., Santos-Neto, E.A., Oliveira, M.L., Silva, P.S., Santos, R.J., Caitano, B., Mariano, C.S.F., Arnhold, A.. & Koch, E.B.A. (2020). A Coleção de Formicidae do Centro de Pesquisas do Cacau (CPDC), Ilhéus, Bahia, Brasil. Boletim do Museu Paraense Emílio Goeldi - Ciências Naturais, 15: 289-305.

Doxon, E.D., Davis, C.A. & Fuhlendorf, S.D. (2011). Comparison of two methods for sampling invertebrates: vacuum and sweep-net sampling. Journal of Field Ornithology, 82: 60-67.

Floren, A., Wetzel, W. & Staab, M. (2014). The contribution of canopy species to overall ant diversity (Hymenoptera: Formicidae) in temperate and tropical ecosystems. Myrmecological News, 19: 65-74.

Folgarait, P.J. (1988). Ant biodiversity and its relationship to ecosystem functioning: a review. Biodiversity and Conservation, 7: 1221-1244.

Gouvêa, J.B.S., Silva, L.A.M. & Hori, M. (1976). Fitogeografia. In: Gonsalves, E. (ed) Diagnóstico Socioeconômico da Região Cacaueira. CEPLAC/IICA, Ilhéus, pp. 1-7.

Gressitt, J.L. & Gressitt, M.K. (1962). An improved malaise trap. Pacific Insects 4: 87-90.

Hallmann, C.A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A., Sumser, H., Hörren, T., Goulson, D. & Kroon, H. (2017). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE, 12: e0185809.

Heneberg, P. & Bogusch, P. (2014). To enrich or not to enrich? Are there any benefits of using multiple colors of pan traps when sampling aculeate Hymenoptera? Journal of Insect Conservation, 18: 1123-1136.

Hochkirch, A. (2016). The insect crisis we can’t ignore. Nature, 539: 141.

Hölldobler, B. & Wilson, E.O. (1990). The Ants. Belknap Press of Harvard University Press, Cambridge, MA, 732 pp.

Hsieh, T.C., Ma, K.H., Chao, A. (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7(12): 1451-1456.

Jones, C.G., Lawton, J.H. & Shachak, M. (1997). Positive and negative effects of organisms as physical ecosystem engineers. Ecology, 78: 1946-1957.

Kim, K.C. (1993). Biodiversity, conservation and inventory: Why insects matter. Biodiversity and Conservation, 2: 191-214.

Klimes, P., Idigel, C., Rimandai, M., Fayle, T.M., Janda, M., Weiblen, G.D. & Novotny, V. (2012). Why are there more arboreal ant species in primary than in secondary tropical forests? Journal of Animal Ecology, 81: 1103-1112.

Lent, D.D., Graham, P. & Collett, T.S. (2010). Image-matching during ant navigation occurs through saccade-like body turns controlled by learned visual features. Proceedings of the National Academy of Sciences, 107: 16348-16353.

Koch, E.B.A., Santos, J.RM., Nascimento, I.C. & Delabie, J.H.C. (2019). Comparative evaluation of taxonomic and functional diversities of leaf-litter ants of the Brazilian Atlantic Forest. Turkish Journal of Zoology 43: 437-456.

Koch, E.B.A., Marques, T.E.D., Mariano, C.S.F., Neto, E.A.S., Arnhold, A., Peronti, A.L.B.G. & Delabie, J.H.C. (2020). Diversity and structure preferences for ant–hemipteran mutualisms in cocoa trees (Theobroma cacao L., Sterculiaceae). Boletim do Museu Paraense Emílio Goeldi. Ciências Naturais, 15: 65-81.

Majer, J.D. (1983). Ants: bioindicators of minesite rehabilitation, land use, and land conservation. Environmental Management, 7: 375-383.

Majer, J.D., Delabie, J.H.C. & Smith, M.R.B. (1994). Arboreal ant community patterns in Brazilian cocoa farms. Biotropica, 26: 73-83.

Malaise, R. (1937). A new insect trap. Entomologisk Tidskrift, 58: 148-160.

Mason, M., & Bordera, S. (2008). Effectiveness of two sampling methods used for collecting Ichneumonidae (Hymenoptera) in Cabaneros national park (Spain). European Journal of Endocrinology, 105: 879-888.

Manthey, M. & Fridley, J.D. (2009). Beta diversity metrics and the estimation of niche width via species co-occurrence data: reply to Zeleny. Journal of Ecology, 97: 18-22.

Marinoni, R.C., & Dutra, R.R.C. (1997). Famílias de Coleoptera capturadas com armadilha malaise em oito localidades do Estado do Paraná, Brasil. Diversidades alfa e beta. Revista Brasileira de Zoologia, 14: 751-770.

Matthews, R.W. & Matthews, J.R. (2017). The Malaise trap: its utility and potential for sampling insect populations. The Great Lakes Entomologist, 4: 117-122.

New, T.R. (1998). Invertebrate Surveys for Conservation. Oxford University Press. Oxford, UK. 256 p.

Novais, S.M.A., Macedo-Reis, L.E. & Neves, F.S. (2016). Predatory beetles in cacao agroforestry systems in Brazilian Atlantic Forest: a test of the natural enemy hypothesis. Agroforest Systems, 91: 201-209.

Oliveira, P.S. & Hölldobler, B. (1989). Orientation and Communication in the Neotropical Ant Odondomachus bauri Emery (Hymenoptera, Formicidae, Ponerinae). Ethology, 83: 154-166.

Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D. & Stevens, M.H.H. (2019). Vegan: Community Ecology Package, 2: 5-6.

R Core Team. (2021). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

Reis, Y.T. & Delabie, J.H.C. (1999). Estudo de uma comunidade de Pseudomyrmecinae usando armadilhas de malaise numa reserva de Mata Atlântica em Porto Seguro, Bahia. Naturalia, 24: 119-121.

Ribas, C.R., Schmid, T.F.A., Solar, R.R.C., Campos, R.B.F., Valentim, C.L. & Schoereder, J.H. (2012). Ants as indicators of the success of rehabilitation efforts in deposits of gold mining tailings. Restoration Ecology, 20: 712-720.

Rice, R.A. & Greenberg, R. (2000). Cacao Cultivation and the Conservation of Biological Diversity. AMBIO: A Journal of the Human Environment, 29: 167-173.

Rohlf, F.J. (1989). NTSYS/PC. Numerical Taxonomy and Multivariate Analysis System. Exeter Publishing, Setauket, US.

Rosenberg, D.M., Danks, H.V., Lehmkuhl, D.M. (1986). Importance of insects in environmental impact assessment. Environmental Management, 10: 773-783.

Santos, J.C. & Fernandes, G.W. (2021). Measuring Arthropod Biodiversity - A Handbook of Sampling Methods. Springer, Cham. 600 p.

Santos, R.J., Koch, E.B.A., Leite, C.M.P., Porto, T.J. & Delabie, J.H.C. (2017). An assessment of leaf-litter and epigaeic ants (Hymenoptera: Formicidae) living in different landscapes of the Atlantic Forest Biome in the State of Bahia, Brazil. Journal of Insect Biodiversity 5: 1-19.

Santos, R.S. & Delabie, J.H.C. (2018). Epigaeic ants in a forest remnant in the state of Acre, Brazil, and new records for the state. Brazilian Journal of Agriculture, 93:24-32.

Sánchez-Bayo, F. & Wyckhuys, K.A. (2019). Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation, 232: 8-27.

Seibold, S., Gossner, M.M., Simons, N.K., Blüthgen, N., Müller, J., Ambarlı, D., Ammer, C., Bauhus, J., Fischer, M., Habel, J.C., Linsenmair, K.E., Nauss, T., Penone, C., Prati, D., Schall, P., Schulze, E., Vogt, J., Wöllauer, S. & Weisser, W.W. (2019). Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature, 574: 671-674.

Sheikh, A.H., Bhandari, R., Thomas, M., Bunkar, K. (2016). Light trap and Insect sampling: An overview. International journal of current research, 11: 40868-40873.

Skvarla, M.J., Larson, J.L., Fisher, J.R. & Dowling, A.P.G. (2020). A review of terrestrial and canopy malaise traps. Annals of the Entomological Society of America, 114: 27-47.

Souza, A.R., Venâncio, D.F.A., Zanuncio, J.C. & Prezoto, F. (2011). Sampling methods for assessing social wasps species diversity in a eucalyptus plantation. Journal of Economic Entomology, 104: 1120-1123.

Souza, H.J. & Delabie, J.H.C. (2020). Ecosystem engineers, ants and termites. In: Starr, C. (ed) Encyclopedia of Social Insects, Springer Nature, pp. 1-6.

Stork, N.E. & Grimbacher, P.S. (2006). Beetle assemblages from an Australian tropical rainforest show that the canopy and the ground strata contribute equally to biodiversity. Proceedings of the Royal Society B: Biological Sciences, 273: 1969-1975.

Szentkiralyi, F. (2002). Fifty year long insect survey in Hungry: T. Jermys contribution to light trapping. Acta Zoologica Academiae Scientiarum Hungaricae, 48: 85-105.

Thomazini, M.J. & Thomazini, A.P.B.W. (2000). A fragmentação florestal e a diversidade de insetos nas florestas tropicais úmidas. Rio Branco: Embrapa Acre (Embrapa Acre. Documentos, 57), 21p.

Uhler, J., Haase, P., Hoffmann, L., Hothorn, T., Schmidl, J., Stoll, S., Welti, E.A.R., Bue, J. & Müller, J. (2022). A comparison of different Malaise trap types. Insect Conservation and Diversity, 15: 666-672.

Wagner, D.L. (2020). Insect declines in the Anthropocene. Annual Review of Entomology, 65: 457-480.

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

Wilkening, A.J., Foltz, J.L., Atkinson, T.H. & Connor, M.D. (1981). An omnidirectional flight trap for ascending and descending insects. Canadian Entomologist, 113: 453-455.

Wink, C., Guedes, J.V.C., Fagundes, C.K. & Rovedder, A.P. (2005) Insetos edáficos como indicadores da qualidade ambiental. Revista de Ciências Agroveterinárias, 4: 60-71.




How to Cite

Koch, E. B. A., Silva, P. S., Arnhold, A., Ferraz, E. C. R., Leponce, M., Mariano, C. dos S. F., & Delabie, J. H. C. (2024). Contribution of Omnidirectional Flight Traps to Assess the Ant (Hymenoptera: Formicidae) Diversity in an Agroforestry System. Sociobiology, 71(2), e9827.



Research Article - Ants

Most read articles by the same author(s)